

EUROPEAN* USERS' MEETING²⁰¹⁷

Parametric design of turbomachinery components for fully automated shape optimization with CFD and stress analysis

CARSTEN FÜTTERER

EUROPEAN USERS' MEETING 2017

Introduction to GAMMA

- Research project
- GAMMA = Effiziente GAsmotoren für MaritiMe Anwendungen
- Goal:
 - Investigate new technologies of turbo charger for fast running high efficient Gas (LNG / Natural) engines
 - Increase efficiency, reduce carbon emissions (~7% in first project phase), stay profitable and reduce complexity of engine parts
- Field of application
 - Engines of 0.5 -10 MW
 - Yards, offshore supply vessel, patrol boats, trains, large trucks
- Project partners:
 - MTU Friedrichshafen GmbH, Numeca Ingenieurbüro, Friendship Systems AG, TU Darmstadt Fachgebiet Gasturbinen, Luft- und Raumfahrtantriebe

Introduction to GAMMA

source: MTU Friedrichshafen GmbH

Workflow

- Important part of the workflow is the combination of structural mechanics (CSM) and CFD
 - Geometry -> CSM -> CFD
 - If the design fails because of structural constraints, the CFD is not calculated
- CAESES has to provide
 - Quality solid segment and fluid domain
 - Geometry, which produces good quality volume cells
 - Geometry, which does not need any modification
 - Geometry, which is robust for a large design space

Quelle: Projektbeschreibung zum Programm des BMWi: "6. Energieforschungsprogram". Verbundvorhaben GAMMA-1

- Current baseline model has good efficiency but very narrow compressor map
- Target
 - increase operation range
 - Increase the efficiency
- Constraints
 - Pressure ratio
 - Eigen frequency
 - Stresses
- Software:
 - Geometry: CAESES
 - Mesh CFD: AutoGrid (Numeca)
 - CFD: FineTurbo
 - Mesh CSM: SimLab
 - CSM: Calculix
 - Optimization: ModeFrontier

Meridional Contours

Beta Distribution for hub

Streamsection

Camber surface

Blade surface

Thickness Distributions

Splitter Blade

- Exports
 - For CFD: in blades in geomTurbo format
 - FOR CSM: Solid segment

Diffusor Blades

- Meta surface for each blade
- Setup is the same as rotor blades
- Each parameter of the meta surface can also be varied in circumferential direction
 - Curve engine and meta surface will be completely generated inside a feature
 - Inputs to the feature are value distributions or constant values for each parameter

Compressor Volute

- Basic profile is modeled with circular segments
- The board angle and the A2R ratio can be varied
- If space constraint for the max radius is reached, then the profile is getting higher
- If the max height is reached, then the profile moves inwards

Ь.,

Compressor Volute

- The tongue is model with a custom fillet surface
- Advantages:
 - Very robust
 - Highly flexible
 - Very good quality of the exported solid (no open edges or intersecting faces)
- Volute export format
 - Parasolid

Compressor Volute – support geometry

- Motivation
 - Robust structured meshing for variable and complex geometries like volutes is very difficult
- Idea:
 - Create parametric support geometry inside CAESES
 - Export the curves to IGG
 - All blocks are well defined, which make the generation of the block mesh much more easy
- Testing if support geometry generated from CAESES can handle this
- Method
 - Included in profile definition
 - Create a meta surface for each line
 - Connect curves from volute and outlet

Turbine blades

- Target
 - Increase the efficiency
- Constraints
 - Eigen frequency
 - Stresses
 - Fatigue life
- Software:
 - Geometry: CAESES
 - Mesh CFD: STARCCM+
 - CFD: STARCCM+
 - Mesh CSM: SimLab
 - CSM: Calculix
 - Optimization: ModeFrontier

Turbine blades – Interesting features

Camber surface

- All points p of the camber surface are dependent on the hub streamline
- p(theta,z)
- Structural beneficial
- Reduces number of design variables

Hub endwall contouring

- Hub contour can be changed in circumferential direction
- Additional changes are possible, to apply endwall contouring
- Beneficial to reduce rotating mass

Hub Scallops

 Scallops are also directly included inside the hub surface

Turbine blades – Interesting features

Max fillet radius

- For mechanical reasons it is beneficial, when the fillet radius between the blades is as large as possible
- Maximum fillet radius and position is automatically calculated
- Internal optimization is used

Periodic segment

- Periodic cut out is crucial between blades
- Working in domain space is very useful
- Care about good quality volume cells

Flow domain

- For CFD
- Fluid and solid domain have to fit exactly on each other

Turbine blades

Thank You!

www.CAESES.com

