

DESIGN ENGINEERING KNOWLEDGE CENTER

DEKC-MARITIME.COM

Parametric Hull Form Optimization for a Wind Farm Installation Vessel

Harry Linskens harry@dekc.nl CAESES European Users' Meeting 29-09-2017

Hans van der Tas

hans@dekc.nl

WHO IS DEKC HISTORY

WHAT IS DEKC

MARITIME DESIGN & ENGINEERING COMPANY

WHY DEKC

COMPLETE RANGE OF MARINE ENGINEERING

DESIGN

DETAIL ENGINEERING

OPERATIONAL SUPPORT

Van Oord's AEOLUS

- L = 140 m
- B = 38 m
- T = 6.0 m
- Speed = 12 kn

AEOLUS 2.0

- L = 140 m
- B = 44 m
- T = 6.6 + 2.0 m
- No changes to propulsion or powerplant

• Speed = ??? kn

Topics for today

- Project outline
- Geometry modeling
- Optimization
- Results

Project Outline

- Increase spudcan size
 - Current construction not to be changed
 - Spudcans protrude below hull

- Increase spudcan size
 - Current construction not to be changed
 - Spudcans protrude below hull
- Increase vessel transport capacity
 - Increase design draft
 - Add sponsons

- Increase spudcan size
 - Current construction not to be changed
 - Spudcans protrude below hull
- Increase vessel transport capacity
 - Increase design draft
 - Add sponsons
- Minimize speed loss (no extra power)
 - Flow bodies designed around spudcans
 - Sponson and flow body optimization

Additional Requirements

- Good buildability
 - Consider building section dimensions
 - Minimum intersection angles
- Easy integration on existing vessel
 - Align with existing construction
 - Maintain tank boundaries
 - Keep to flat intersection surfaces as much as possible

Geometry Modeling

Sponson Geometry

Flow Body Geometry

Production of Sponsons and Flow Bodies

- CAESES geometry imported directly into Cadmatic Hull
- No production fairing necessary (good quality shape!)

Optimization

Global Strategy

- Objectives
 - Minimize resistance
 - Minimize velocity gradients in propeller plane
 - Maximize hull efficiency
- Two optimization steps
 - Minimizing wave resistance
 - Minimizing viscous resistance and propulsive losses

Minimizing Wave Resistance (1)

- Sponson interacts with fwd shoulder wave
 - Generate favorable interference
 - Smooth fwd shoulder
- Focus on sponson geometry
 - Minimize entry angle at waterline
 - Maximize smoothness at waterline
 - Constructional constraints respected

Minimizing Wave Resistance (2)

DESIGN ENGINEERING KNOWLEDGE CENTER

Minimizing Viscous Losses (1)

- Parametrized sponson and flow body models
- Two-stage multi-objective optimization
 - Global optimization using Sobol
 - Local optimization using Tsearch
- Software connection from CAESES to Numeca FINE/Marine

Minimizing Viscous Losses (2)

Results (1)

- Simulations performed with appendages and actuator disks
 - Effective power determined directly
 - Hull efficiency calculated
- Delivered power prediction based on:
 - Determined hull efficiency
 - Towing tank tests
 - Sea trial data

Results (2)

Draft	+10.0 %
Beam	+15.8 %
Calm-Water Resistance (without optimization)	+257.0 %
Calm-Water Resistance (after optimization)	+28.6 %
Propulsive Efficiency	-6.9 %
Design Speed	-8.3 %

AEOLUS 2.0

- L = 140 m
- B = 44 m
- T = 6.6 + 2.0 m

• Speed = 11 kn

DESIGN ENGINEERING KNOWLEDGE CENTER

DEKC-MARITIME.COM