Parametric Hull Form Optimization for a Wind Farm Installation Vessel

Harry Linskens
harry@dekc.nl

Hans van der Tas
hans@dekc.nl

CAESES European Users’ Meeting
29-09-2017
WHO IS DEKC

HISTORY
WHAT IS DEKC
MARITIME DESIGN & ENGINEERING COMPANY

EMPLOYEES
- Structural Designers
- Mechanical Engineers
- Naval Architects
- Stability Experts
- FEM Experts
- CFD Experts
- Project Managers
- Detail Structures and Outfitting Engineers

MARKET EXPERIENCE
- Yachts
- Offshore
- Architecture
- Dredging
- Wind
- Construction
- Shipping
- Fishing
- Passenger Transport
WHY DEKC
COMPLETE RANGE OF MARINE ENGINEERING

DESIGN

DETAIL ENGINEERING

OPERATIONAL SUPPORT

DESIGN ENGINEERING KNOWLEDGE CENTER
Van Oord’s AEOLUS

- L = 140 m
- B = 38 m
- T = 6.0 m
- Speed = 12 kn
Upgrade?

- Deeper max draft
- Sponsors along side
- Larger main crane
- Enlarged spudcans

DESIGN ENGINEERING KNOWLEDGE CENTER
AEOLUS 2.0

- \(L = 140 \text{ m} \)
- \(B = 44 \text{ m} \)
- \(T = 6.6 + 2.0 \text{ m} \)

- No changes to propulsion or powerplant

- Speed = ??? kn
Topics for today

• Project outline
• Geometry modeling
• Optimization
• Results
Project Outline
Goals
Goals

• Increase spudcan size
 • Current construction not to be changed
 • Spudcans protrude below hull
Goals

- Increase spudcan size
 - Current construction not to be changed
 - Spudcans protrude below hull

- Increase vessel transport capacity
 - Increase design draft
 - Add sponsons
Goals

• Increase spudcan size
 • Current construction not to be changed
 • Spudcans protrude below hull

• Increase vessel transport capacity
 • Increase design draft
 • Add sponsons

• Minimize speed loss (no extra power)
 • Flow bodies designed around spudcans
 • Sponson and flow body optimization
Additional Requirements

• Good buildability
 • Consider building section dimensions
 • Minimum intersection angles

• Easy integration on existing vessel
 • Align with existing construction
 • Maintain tank boundaries
 • Keep to flat intersection surfaces as much as possible
Geometry Modeling
Sponson Geometry

Intersection curves

Flat-of-side curves

F-spline curves

Meta-surfaces
Flow Body Geometry

- F-spline curves
- Intersection curve
- Along flat-of-bottom
Production of Sponsons and Flow Bodies

• CAESES geometry imported directly into Cadmatic Hull
• No production fairing necessary (good quality shape!)
Optimization
Global Strategy

• Objectives
 • Minimize resistance
 • Minimize velocity gradients in propeller plane
 • Maximize hull efficiency

• Two optimization steps
 • Minimizing wave resistance
 • Minimizing viscous resistance and propulsive losses
Minimizing Wave Resistance (1)

• Sponson interacts with fwd shoulder wave
 • Generate favorable interference
 • Smooth fwd shoulder

• Focus on sponson geometry
 • Minimize entry angle at waterline
 • Maximize smoothness at waterline
 • Constructional constraints respected
Minimizing Wave Resistance (2)

Current

Upgraded

Wave Elevation

DESIGN ENGINEERING KNOWLEDGE CENTER
Minimizing Viscous Losses (1)

• Parametrized sponson and flow body models

• Two-stage multi-objective optimization
 • Global optimization using Sobol
 • Local optimization using Tsearch

• Software connection from CAESES to Numeca FINE/Marine

Resistance, Wake

STL domain, Optimization routine
Minimizing Viscous Losses (2)
Results (1)

• Simulations performed with appendages and actuator disks
 • Effective power determined directly
 • Hull efficiency calculated

• Delivered power prediction based on:
 • Determined hull efficiency
 • Towing tank tests
 • Sea trial data
Results (2)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Draft</td>
<td>+10.0 %</td>
</tr>
<tr>
<td>Beam</td>
<td>+15.8 %</td>
</tr>
<tr>
<td>Calm-Water Resistance (without optimization)</td>
<td>+257.0 %</td>
</tr>
<tr>
<td>Calm-Water Resistance (after optimization)</td>
<td>+28.6 %</td>
</tr>
<tr>
<td>Propulsive Efficiency</td>
<td>-6.9 %</td>
</tr>
<tr>
<td>Design Speed</td>
<td>-8.3 %</td>
</tr>
</tbody>
</table>
AEOLUS 2.0

- L = 140 m
- B = 44 m
- T = 6.6 + 2.0 m
- Speed = 11 kn