

Tool Integration and Software as a Service

Jörg Brunswig

Hamburgische Schiffbau-Versuchsanstalt

Overview

Context: HOLISHIP

Hydrodynamic Tools

Example: ν -Shallo

Introduction

WebApp

Software as a Service

Conclusions & Outlook

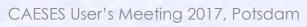
Context

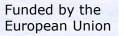
- EU-funded project HOLISHIP (Holistic Optimisation of Ship Design and Operation for Life Cycle)
- Started in September 2016
- 38 partner organisations
- www.holiship.eu

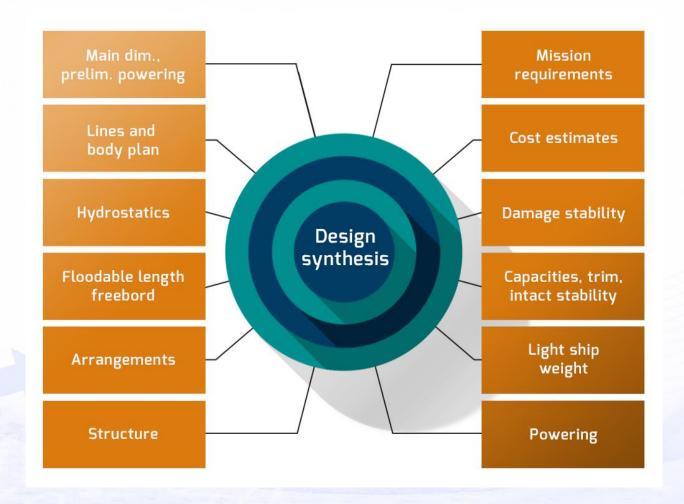
innovation for life

HOLISHIP

Epsilon







HOLISHIP Approach

HOLISHIP Approach

- Many design tools from different disciplines
- Two platforms
 - Design: CAESES
 - Virtual Vessel Framework
- Tool suppliers will integrate their tools with support of platform providers
 - Advantage: integration can easily be updated (most tools under active development)
- Tool integrations will be demonstrated in a number of application cases

			index	Software Tool	Description	Partner
			1	StarCCM+	RANS code for calculating resistance, seakeeping and maneuvering	Tritec Marine
	314 4 411	KANS & UKANS CODES	2	FreSCo+	RANSE Based CFD code for viscous flow simulations. Used to determine hull resistance and propulsion properties, behavior of ships in a seaway (ship motions and added resistance), maneuvering capabilities etc.	HSVA
	o Stand	KANS	3	ReFresco	RANS code for calculating ship resistance, flow around the hull and for determining maneuvering characteristics.	MARIN
S			4	Xnavis	Steady/Unsteady RANS based solver	CNR- INSEAN
S Tool			5	ANSYS AQWA	Potential theory based BEM solver for seakeeping calculations	Tritec Marine
Hydrodynamic Analysis Tools	Potential Flow Codes		6	NEWDRIFT	Potential flow 3D panel code for seakeeping, motions, loads and drift forces on ships and floating bodies in waves	NTUA
ydrodynar		Seakeeping	7	ShipX - Vessel Responses (VERES)	Potential, strip theory based tool. Calculates ship motions and global loads, including short term statistics, long term statistics and operability.	SINTEF
H		Sed	8	Aegir	Potential flow 3D Panel code (nonlinear/unsteady, time domain): seakeeping, added resistance, unsteady loads, 6DOF	CNR- INSEAN
			Sea-keeping software based on Boundary Element Method (BEM), using linear and 2 nd order potential theory.	BV		
		Wave Resistance	10	v-SHALLO	Fully non-linear, free surface potential CFD code computing the inviscid flow around a ship hull at a free surface	HSVA
		Wave R	11	WARP	Potential flow 3D Panel code to determine calm water resistance and loads. Steady, 2DOF	CNR- INSEAN

Table 1: List of Software Tools – Potential Flow & RANS

		index	Software Tool	Description	Partner
Hydrodynamic Analysis Tools		12	MaxWave_Prop	Estimates the maximum wave height at which the ship is capable to navigate in head waves	Strathclyde
		13	MaxWave_Steer	Predicts the maximum wave head and the maximum available speed at which the ship is capable to maneuver in adverse sea conditions	Strathclyde
	Other Tools for Hydro Analysis	14	Parametric Rolling	Tool developed within CAESES. Performs level 1 and level 2 checks for parametric roll failure mode, as described in SDC 2/WP.4 IMO guidelines	Strathclyde
		15	ShipX - Ship Speed and Powering	Calculation of calm water resistance and performance in addition to speed loss in waves. Utilizes empirical methods, residual resistance from database or model test or regression of resistance from SINTEF Ocean's database	SINTEF
		16	Wageningen B-series	Estimates the thrust and torque propeller characteristics using Wageningen B-series data (Matlab code)	Strathclyde
		17	Holtrop and Mennen's method	Utilizes empirical methods for resistance and propulsion prediction	Strathclyde
		18	XShip	XShip is an empirical maneuvering simulation tool.	MARIN
CASD Tools		19	NAPA	Naval Architecture Package suitable amongst others for stability calculation (intact and damage)	HSB
		20	NAPA macros	NAPA macros for intact and damaged stability calculations	NTUA
Suppleme- ntary Tools		21	HEXPRESS	Hexahedral volume mesh generation tool	HSVA
		0.15050		CAESES Connector tool for StarCCM+	Strathclyde

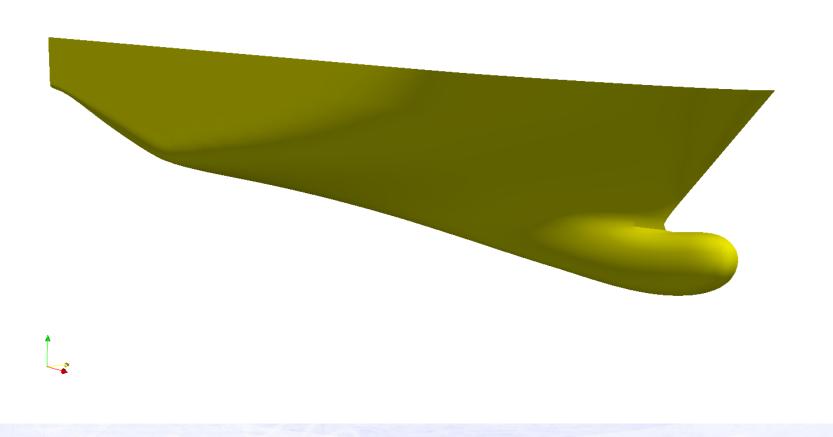
Table 2: List of Software Tools – Other Tools

			index	Software Tool	Description	Partner
			1	StarCCM+	RANS code for calculating resistance, seakeeping and maneuvering	Tritec Marine
	RANS & URANS codes		2	FreSCo+	RANSE Based CFD code for viscous flow simulations. Used to determine hull resistance and propulsion properties, behavior of ships in a seaway (ship motions and added resistance), maneuvering capabilities etc.	HSVA
			3	ReFresco	RANS code for calculating ship resistance, flow around the hull and for determining maneuvering characteristics.	MARIN
S			4	Xnavis	Steady/Unsteady RANS based solver	CNR- INSEAN
s Tool			5	ANSYS AQWA	Potential theory based BEM solver for seakeeping calculations	Tritec Marine
Hydrodynamic Analysis Tools	Potential Flow Codes		6	NEWDRIFT	Potential flow 3D panel code for seakeeping, motions, loads and drift forces on ships and floating bodies in waves	NTUA
ydrodynar		Potential Flow Codes Seakeeping	7	ShipX - Vessel Responses (VERES)	Potential, strip theory based tool. Calculates ship motions and global loads, including short term statistics, long term statistics and operability.	SINTEF
н			8	Aegir	Potential flow 3D Panel code (nonlinear/unsteady, time domain): seakeeping, added resistance, unsteady loads, 6DOF	CNR- INSEAN
			9	HydroStar	Sea-keeping software based on Boundary Element Method (BEM), using linear and 2 nd order potential theory.	BV
		Wave Resistance	10	v-Shallo	Fully non-linear, free surface potential CFD code computing the inviscid flow around a ship hull at a free surface	HSVA
		Wave R	11	WARP	Potential flow 3D Panel code to determine calm water resistance and loads. Steady, 2DOF	CNR- INSEAN

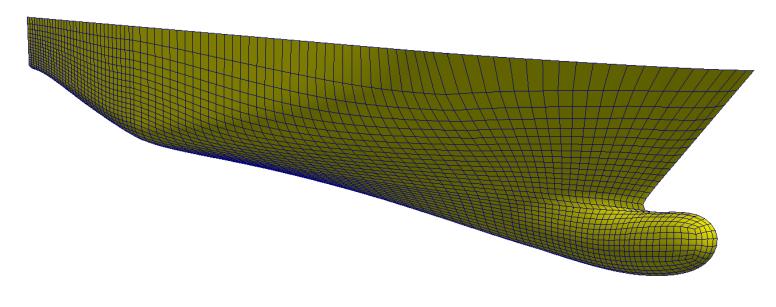
Table 1: List of Software Tools – Potential Flow & RANS

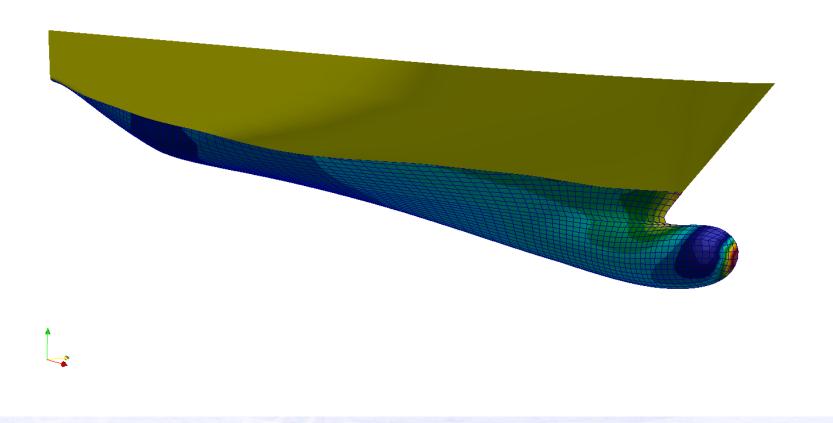
		index	Software Tool	Description	Partner
Hydrodynamic Analysis Tools		12	MaxWave_Prop	Estimates the maximum wave height at which the ship is capable to navigate in head waves	Strathclyde
		13	MaxWave_Steer	Predicts the maximum wave head and the maximum available speed at which the ship is capable to maneuver in adverse sea conditions	Strathclyde
	Other Tools for Hydro Analysis	14	Parametric Rolling	Tool developed within CAESES. Performs level 1 and level 2 checks for parametric roll failure mode, as described in SDC 2/WP.4 IMO guidelines	Strathclyde
		15	ShipX - Ship Speed and Powering	Calculation of calm water resistance and performance in addition to speed loss in waves. Utilizes empirical methods, residual resistance from database or model test or regression of resistance from SINTEF Ocean's database	SINTEF
		16	Wageningen B-series	Estimates the thrust and torque propeller characteristics using Wageningen B-series data (Matlab code)	Strathclyde
		17	Holtrop and Mennen's method	Utilizes empirical methods for resistance and propulsion prediction	Strathclyde
		18	XShip	XShip is an empirical maneuvering simulation tool.	MARIN
CASD Tools		19	NAPA	Naval Architecture Package suitable amongst others for stability calculation (intact and damage)	НЅВ
		20	NAPA macros	NAPA macros for intact and damaged stability calculations	NTUA
Suppleme- ntary Tools		21	HEXPRESS	Hexahedral volume mesh generation tool	HSVA
		22	CAESES Connector tool for StarCCM+	CAESES Connector tool for StarCCM+	Strathclyde

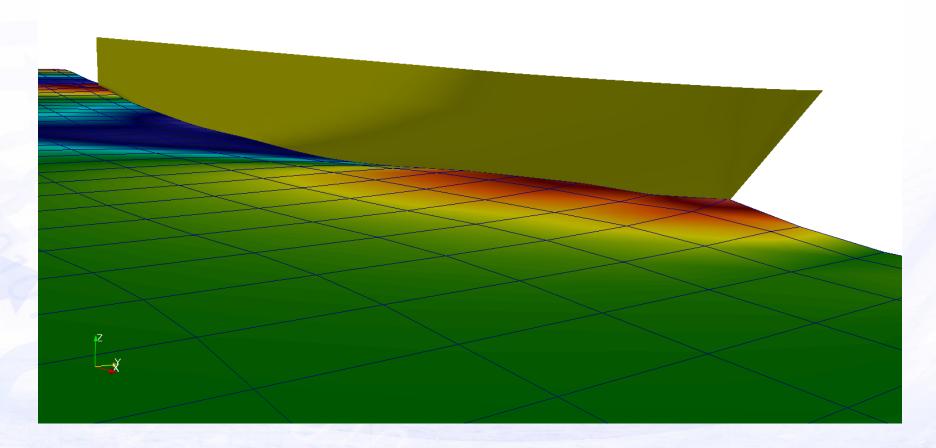
Table 2: List of Software Tools – Other Tools

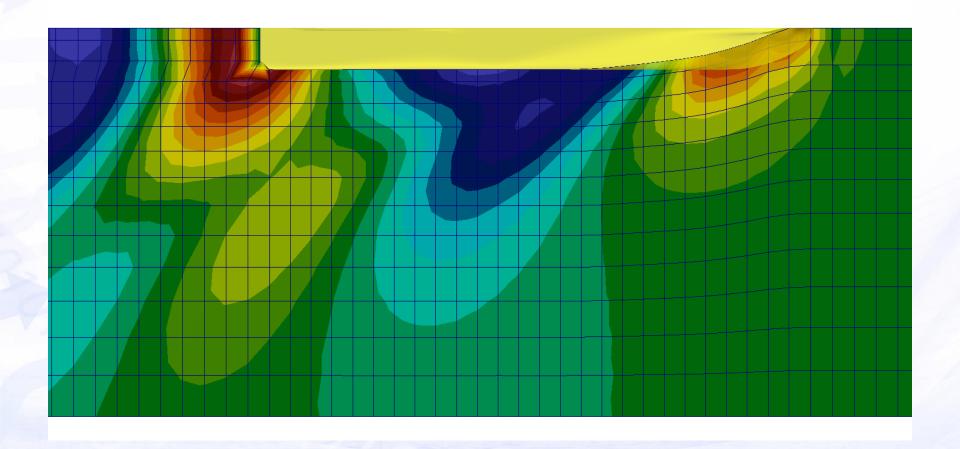


- Calm water resistance based on potential flow
- Nonlinear BC at water surface, requires iterative solution
- Resistance by pressure integration
- Shared-memory parallelisation (OpenMP)



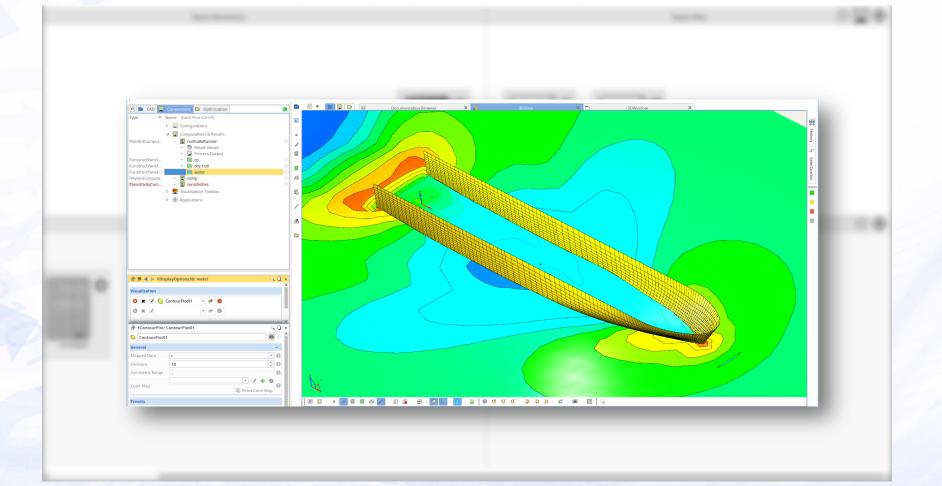




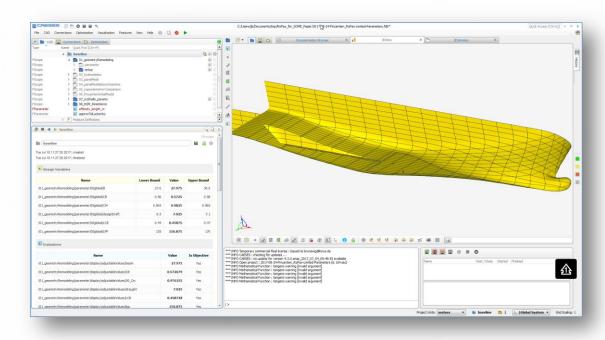


- Input
 - Representation of geometry: panelisation
 - Two ASCII files for case setup
- Output
 - ASCII files reporting resistance, trim and sinkage
 - VTK files
 - Wave elevation
 - Pressure distribution / velocities on the hull


```
Template Name nondef.opt
                                   NPROC <entry>NPROC</entry>
                                   POST_OPT 3
                                   DX_ONLY 1
                                   RELAXTRIM <entry>RELAXTRIM</entry>
                                   RELAXSINK <entry>RELAXSINK</entry>
Template Name | shallo.ctl
    <entry>casename</entry>
     <entry>speed</entry> <entry>n_iter</entry> 2 9999.00
    panels.pan
    <entry>lpp</entry> 00E0 00E0 <entry>draught_app</entry> <entry>draught_fpp</entry> 00E0 f
```

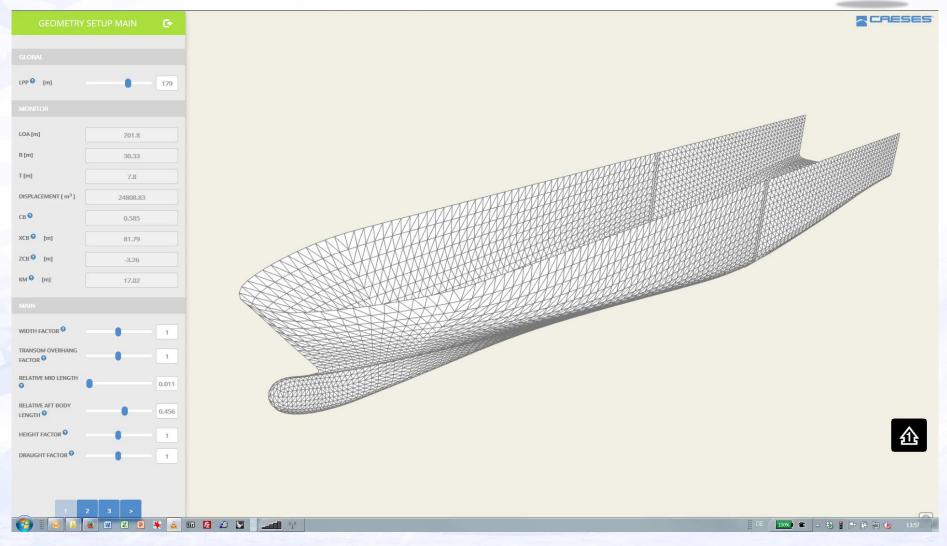


d ▶ ≡ &		۹. 🛮			
g nuShallo	Generic				
General					
nuShalloGene	eric				
NPROC	10	- €			
	162				
lpp	01_geometryRemodeling parameter display adjustableValues lpp	-			
	10.80333333				
speed	07_nuShallo_params in sim_speed_ms				
n_iter	20	- €			
draught_app	7.1				
	07_nuShallo_params in sim_draught				
draught_fpp	7.1				
	07_nuShallo_params in sim_draught				
RELAXTRIM	0.5	- €			
RELAXSINK	0.5	- €			



General					File	Cile				
						10914326.0				
Template Na	n SHALL	O.PIL			300 Friction form factor: 0.09 301 Visc. press. Force: -22.43 21.12 29.93 39.99 82	.99 -13				
Subfolder					302 >> New Step	.99 -10				
Column Sep	water				303 >> Max. error: 0.102341E-01 at point (i,x,y)3166 -13.2755 2.2900 304 cw: 5.11926773E-04					
					305 CF_ITTC: 1.46984053E-03 306 k Friction: 9.02278423E-02					
Find number					307 CVD 1.75782043E-04					
Custom					308 CT: 2.29016994E-03 309 CR: 8.20329296E-04					
Values					310 Rt: 599.150085 311 Rr: 214.613068					
Name	O DI	uShallo CR			311 Kr: 214,013908 312 max Zeta: 1,93583488					
Name	• Inc	JSHallo_CR			313 at (x,y): 150.267593 2.24538302					
Type	FDoubl	e			314 delta_t'= -2.40903137E-06 total sinkage: 6.66136742E-02 315 delta_psi= 3.00771603E-07 total trim: 4.00162721E-03					
					316 TAP= 10.6666136 TFP= 11.2816620					
Line	0				317 318 > Iteration 10 ***********************************					
	0				319 320 actual Wetted surface (m^2) : 2867.79834					
Column	0				321 Total Humber of panels on body. 1924					
Anchor Strin	CR:				322 Total number of collocation points on water surface: 1262 323 Total number of collocation points on transom: 0					
					324 Location of hull sources determined!	3186				
Occurrence	Last				326 Coefficients for free surface boundary condition ready!	3186				
Average					327 Coefficients for body boundary condition ready! 328 Velocities computed!					
					329					
Results Prev	iew				330 Total Force vect.: -65.33 -83851.60 -143406.11 197305.00 - 331 Friction form factor: 0.09	10914349				
		Value	Туре		332 Visc. press. Force: -22.43 21.12 29.89 40.06 83	.15 -				
nuShallo_Cl	_ITTC	0.00146984	FDouble	K	334 >> Max. error: 0.102456E-01 at point (i,x,y)3166 -13.2755 2.2900					
nuShallo_k	Eriction	0.0902166	FDouble	N	335 cw: 5.11954422E-04 336 CF_ITTC: 1.46984053E-03					
				_	337 k_Friction: 9.02166367E-02 338 CVD 1.75723791E-04					
nuShallo_C	/D	0.000175724	FDouble	k	339 CT: 2.29012268E-03					
nuShallo_C		0.00229012	FDouble	N.	340 CR: 8.20282265E-04 341 Rt: 599.137756					
nuShallo Ci	1	0.000820282	FDouble	N	342 Rr: 214.600754 343 max Zeta: 1.93697262					
				_	344 at (x,y): 150.267593 2.24621844					
nuShallo_Rt		599.138	FDouble	K	345 delta_t = 2.78094449E-05 total sinkage: 6.66414872E-02 346 delta_psi= -2.27068597E-07 total trim: 4.00139997E-03					
nuShallo_Rr		214.601	FDouble	K	347 TAP= 10.6666412 TFP= 11.2816544 348 the crystal ball says: Done					
nuShallo m	av zeta	1.93697	FDouble	N	349					

RoPax WebApp: Model


- Based on a Fincantieri design
- Re-modelled using CAESES
- Most parameters are relative (factors)

RoPax WebApp: Demo

Benefits of Web Apps

Provider:

- Wrap complex functionality in simple interface
- Demonstrate functionality of a tool or model
- Offer services efficiently (e.g. as pay-per-use)

User:

- No software licenses required
- No specialists required for standard simulations

Customer:

 More cost-efficient for low-volume applications

Software as a Service (SaaS)

- CFD Simulation(s)
 - Calm water resistance
 - Speed-power (incl. propulsion)
 - Seakeeping
 - Adjoint Analysis
- Optimisation
 - Single discipline, e.g. hydrodynamics
 - Multiple disciplines

Things that could go wrong

Things that could go wrong

User input: geometry provided by customer not valid

Things that could go wrong

User input: geometry provided by customer not valid

Numerical method could fail

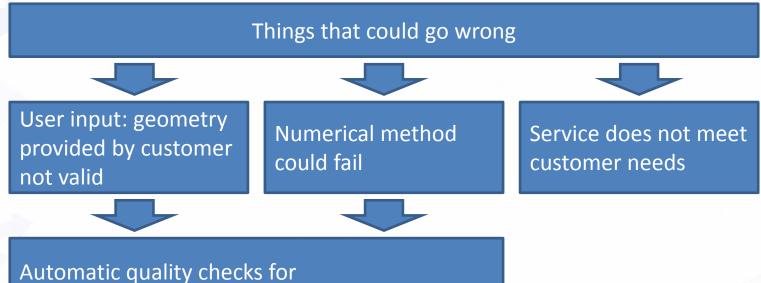
Things that could go wrong

User input: geometry provided by customer

Numerical method could fail

Automatic quality checks for

Geometry


not valid

- Numerical meshes
- Convergence of simulation
- Validity of simulation results

- Geometry
- Numerical meshes
- Convergence of simulation
- Validity of simulation results

User input: geometry provided by customer not valid Numerical method could fail Service does not meet customer needs

Automatic quality checks for

- Geometry
- Numerical meshes
- Convergence of simulation
- Validity of simulation results

Clearly define limits of web service. Offer additional products as project work.

SaaS: Open Questions

- Are there serious legal issues?
- Who would do user management and shop setup?
- Could web services cannibalize classical project work?

Conclusions & Outlook

- ν -Shallo WebApp works as a demonstrator
- Integrated tools could be implemented as SaaS
- Next steps:
 - Work on process chains for viscous CFD applications
 - Develop and implement validity and quality checks
 - Integrate more tools
 - Further assessment of SaaS

Thank you for your attention!

Questions? Suggestions? Remarks?

Jörg Brunswig HSVA +49 40 69203 – 219 brunswig**@hsva.de**

