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Advantages

Fast and cheap model
evaluations
Deeper knowledge of your
data (sensitivity analysis)
Connection of tools
without interface
problems
Forecast the future (time
dependent problems)
Expensive design
optimization, robustness
evaluation, ... becomes
possible
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In the field of mechanical
engineering:

(Robust) Design
optimization

Robustness / reliability
analysis
Time series forecasting
Classification / anomaly
detection
...
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Design of Experiment - Latin hypercube sampling

Latin Hypercube
sampling (LHS) is
one of the most
used sampling
methods for design
plans...

but it can also be
very useless if it is
not optimized
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Optimized Latin hypercube sampling
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Stepwise convergence check

Sequential sampling can be used for convergence check of
surrogate model
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Automatic outlier detection

Local outlier factor (LoF).
Density based outlier detection.
It detects outliers in data with
areas of different density.
Just one outlier can have a huge
impact on the prognosis quality.
Searches for each output
individually for outliers.
LoF � 1 outlier.

A

The basic idea of LoF:
compare the local density of 
a point with its neighbors
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Variance based sensitivity analysis

First order:
Si = Vi

V ar(y)
Total order:

STi = Ex∼i (V arxi (y|x∼i))
V ar(y)

Sum of ST i > 1 if
interaction effects
between x, y are present.
Non-linear,
non-monotonic,
multivariate sensitivities.
Useful for root cause
analysis
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Deep Gaussian covariance networks - Advantages

Any training samples size is possible even on low hardware
resources, since flexible batch training can be used.

Gaussian process based confidence intervals (measurement of
uncertainty) of prediction.
A trained model can be updated with new trainings points
without retrain the whole model (online-learning).
It is very useful for adapted or sparse Input and different noise
levels like in multi-fidelity data.
Multiple different Gaussian process covariance functions are
used and trained simultaneously. So complex problems can be
predicted even better.
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Training time comparison (1/2)

Test function with 100 input parameters and 1 output.
Training is based on 100 epochs (reasonable good model in
most cases).
Training samples N range from 50 to 1.638.400 (doubling).
13.360 trainable hyperparameters.
3 training modes are compared:

Batch size = N on CPU
Batch size = 200 on CPU
Batch size = 200 on GPU

Training on a HPC (distributed learning) would also be
possible.
Used CPU: Intel Core i7 3770 2 cores at 3.50 GHz.
Used GPU: Nvidia Quadro 4000 256 Cuda cores (7 years old)
modern GPU have 3840 Cuda cores.
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Training time comparison (2/2)
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Example - Classification MNIST data set (1/2)

60.000 training and
10.000 test points of
handwritten digits
Each data point is defined
by an 28X28 pixel image
(784 parameters)
Corresponding number
represented by a 10
element vector
(0,1,2,3,4,5,6,7,8,9)
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Example - Classification MNIST data set (2/2)

Training time ∼ 10 min
Error rate ∼ 5%

Predicted: 6 Predicted: 9 Predicted: 0

Predicted: 1 Predicted: 5 Predicted: 9

Predicted: 7 Predicted: 3 Predicted: 4
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Mode for sequential problems

The framework also includes a calculation mode for sequential
dependent problems.

For example time dependent problems, where
xt−1, xt−2, ..., xt−n or yt−1, yt−2, ..., yt−n need to be
considered.
In this case the framework even learns the hyper parameters
not only dependent on X but also over the time t.
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Validation methods

To estimate the prognosis quality of the surrogate model,
R2

pred calculated via cross validation:

R2
pred = 1 −

∑N
i=1 (yi − ŷi)2∑N

i=1 (yi − E(yi))2

Predicted vs. observed plot.
Visual check of the model for example surface plot.
Prediction of further test data.
Uncertainty estimation of the prediction.
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Confidence intervals

The framework provides
the opportunity to give
the confidence interval of
its prediction.
Model uncertainties can
be visualized.
Useful for sampling
adaption strategies and
surrogate based robust /
reliability analysis.
Example: Branin function
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16 samples with 95% confidence intervals (1/3)
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32 samples with 95% confidence intervals (2/3)
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64 samples with 95% confidence intervals (3/3)
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Application

The "‘TurboLab Stator"’ is a
stator in a measurement rig at
the TU Berlin.
An initial stator geometry has
been designed based on a
representative stator geometry.
The task is to reduce the total
pressure loss and to minimize
the flow angle deviation at the
outlet over an incidence range.
3 operation points (inlet flow
angle varies ±5◦).
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Parametric model

CAD tool CAESES.
Overall 73 input parameters:

5 profile sections.
28 main parameters (stagger
angle, camberline, thickness).
6 stacking parameters.
31 tuning parameters
(thickness tuning).
8 endwall contouring
parameters (amplitude,
position).
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Main parameters - Camberline / Stagger angle

NURBS curve connects three
points.
Weight of the second point can
be controlled.

Axial chord length

Stagger

Normalized position
of mid point
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Main parameters - Thickness
LE, TE is given by radius , ellipse
factor and spread angle.
With LE angle the point 1 is created.
With TE angle and the parameter TE
Shape point 2 is created.
NURBS curve connects LE with TE
including point 1 and point 2.
Distance d1 to point 1 is optimized
internally to get a maximum thickness.

Spread angle
de�nition

Point 1
d1

Max thickness

Point 2

Normalized distance

K.Cremanns CAESES European Users Meeting, Sep 27-29, 2017 October 5, 2017 28 / 50



Introduction to machine learning
Creation of supervised machine learning models

TU-Berlin stator optimization

Parametric CAD model and CFD setup
Optimization
Results

Stacking parameters

Stacking axis is controlled by 4
points, which can be varied by
its:

theta angle.
the distance of the mid points
from inner and outer radii.

x hub Region

theta_dv

x shroud Region
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Tuning parameters

Shift function can shift the thickness distribution in x and y
direction.

Point 0

Point 1

Point 2

Shift value

Point 3

Point 4

Point 5

Normalized position

Shift function
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Throat optimization

In order to place the throat at the leading edge of the profile,
the spread angle of the leading edge is optimized internally.

K.Cremanns CAESES European Users Meeting, Sep 27-29, 2017 October 5, 2017 31 / 50



Introduction to machine learning
Creation of supervised machine learning models

TU-Berlin stator optimization

Parametric CAD model and CFD setup
Optimization
Results

Endwall contouring - Trigonometric approach

Crosssection of endwall for one
blade passage is represented by
sine function, controlled by:

Frequency.
Amplitude.
Phase shift.

Functions control how these
parameters change in
streamwise direction.
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CFD setup / Constraints

CFX solver.
Meshing in ICEM.
Spalart-Allmaras turbulence model.
Scalable wall function.
3 operation points with 37◦, 42◦, 47◦ inlet whirl angle.
Specific heat coefficient of 1.4.
Inlet total pressure: 102713.0 Pa.
Inlet total temperature: 294.314 K.
Inlet pitch angle: 0◦.
Inlet turbulence intensity: 4%.
Outlet massflow of 9.0 kg/s (full annulus).
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Process chain

- Creates geometry
- Export .ttin �le for ICEM
- Controls DoE work-�ow
- Check manufacturing contraints.

Design
- ICEM creates mesh
- 3 load cases in CFX
- Calculate objectives

Data for
surrogate model

Input Output

Optimizer

Optimal design
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Design of experiment

Pre studies within CAESES to
check geometry stability (no
calculations on CFX).
Starting around +-20% of the
initial blade geometry for the
parameters (if possible).
Final DoE with overall 80
designs (73 input parameters)
calculations with optimized
LHS.

0.0 0.2 0.4 0.6 0.8 1.0
X1

0.0

0.2

0.4

0.6

0.8

1.0
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2
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Sensitivity - pressure loss 37◦

0.0 0.2 0.4 0.6 0.8 1.0
Importance

thickness_tuning_y3_dv4

zStart

stagger_dv2

stagger_dv3

camberPos_dv4

camberPos_dv1

camberPos_dv3

camberPos_dv2
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0.2

0.6

PAM for eval_PressureLoss37deg = 0.97(K-fold), 0.97(Loo)
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Sensitivity - pressure loss 37◦
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Optimization objective

Two optimization criteria, leading to a multi-objective optimization
problem. In addition three operating points have to be considered:

Minimize the total pressure loss between inlet and outlet
under the constraint of keeping the mass flow at 9.0 +/- 0.1
kg/s (full annulus). The total pressure loss is defined as
loss = ptotalin

−ptotalout
ptotalin

−pstaticin
.

Minimize the flow angle deviation at the CFD outlet from the
axial direction.
The inlet whirl angle is allowed to vary by + − 5◦. Thus three
operating points have to be considered.
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Optimization constraints - Manufacturing constraints

The number of blades is fixed to n = 15.
The axial chord of the blade has to be kept constant.
The minimum value for leading and trailing edge radius is
1mm.
The two holes for the fixture in the middle of the blade have a
radius of 2.5 mm and a depth of 20 mm. The blade thickness
at these positions has to accommodate a cylinder of material
with a radius of 5 mm and a depth of 20mm. The two holes
have to be at least 60mm apart from each other.
The blade has to be mountable on a plate of dimensions
200mm x 80 mm.
The reduction of radius due to the hub contouring has to be
<= 5mm and the increase of the radius due to the hub
contouring has to stay below 10mm.
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Constraints - Drilling clearances - drilling angle

After the position is obtained,
the drilling angle will be
optimized, to avoid an
intersection of the drilling with
the blade surface.
Drilling angle is the difference
angle to the normal, applied
around the z-axis.
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Optimization on surrogate model

NSGA II optimization
algorithm.
300 generations, with 50
population size.
15000 overall design
evaluations on surrogate
model.
5 minutes on surrogate
model against 625 days
on CFX (32 cores per
operation point).
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Multi-objective Pareto-front
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Results
Recalculation chosen design

Design point 42◦ Off-design 37◦ Off-design 47◦

Total pressure loss (%) 6.09/6.16 5.95/6.13 7.05/7.39

Rel. error (%) 1.15 3.02 4.82

Exit whirl angle (deg2) 14.98/15.44 12.63/12.95 27.28/27.78

Rel. error (%) 3.07 2.53 1.83

Baseline vs. optimum objective function results

Design point 42◦ Off-design 37◦ Off-design 47◦

Improvement TPL(%) 5.23 2.85 5.98

Improvement EWA(%) 30.57 19.31 28.27
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Comparison: blade geometry - hub

Baseline Optimum
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Comparison: blade geometry - shroud

Baseline Optimum
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Comparison: blade geometry - front

Baseline
Optimum
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Comparison: blade geometry -side

Baseline Optimum
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Comparison: 2D field axial flow angle

Baseline Optimum
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Summary

Deep Gaussian covariance networks are capable to handle
different type of problems with arbitrary size of data, with fast
training times and high prognosis quality.
Automatic variable selection and deeper knowledge of your
data through sensitivity analysis.
Multi-objective optimization application TU-Berlin stator with
only 80 designs for 73 input parameters and 3 operation
points.
Good accuracy of surrogate model and efficient improvement
for both objective functions of 4.86% for the pressure loss and
27.85% for the axial flow deviation.
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