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In the field of mechanical
engineering:
o (Robust) Design
optimization

E(A) vs. B(w)

— Recalculation
— Surrogate model
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In the field of mechanical

engineering:
(Robust) Design
optimization
o Robustness / reliability
analysis

K.Cremanns

- Safe Points
+ Failure Points

October 5, 2017




Introduction to machine learning

Creation of supervised machine learning models

TU-Berlin stator optimization

In the field of mechanical
engineering:
(Robust) Design
optimization

Robustness / reliability
analysis

o Time series forecasting
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(LoF). .
Density based outlier detection. ~ The basicidea of LoF: = *,
compare the local density of "«
It in data with a point with its neighbors \

Just one outlier can have a huge
impact on the prognosis quality.

Searches for each

LoF > 1 outlier.
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First order:
o S Z PAM forTAU_FINS=0.99(K-.f0|d), 0.99(L:00)
Var(y) : : :
t_casing 0:66
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even on
, since flexible can be used.

based (measurement of
uncertainty) of prediction.

A trained model can be updated with new trainings points
without retrain the whole model ( )-
It is very useful for or and different noise
levels like in

O are
used and . So complex problems can be
predicted even better.
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Test function with and 1 output.

Training is based on (reasonable good model in
most cases).

range from (doubling).

3 training modes are compared:

Batch size = N on CPU
Batch size = 200 on CPU
Batch size = 200 on

Training on a HPC ( ) would also be
possible.

Used CPU: Intel Core i7 3770 2 cores at 3.50 GHz.

Used GPU: Nvidia Quadro 4000 256 Cuda cores (7 years old)
modern GPU have 3840 Cuda cores.

T W



Introduction to machine learning

Creation of supervised machine learning models
TU-Berlin stator optimization

Comparison of training modes
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and
10.000 test points of
handwritten digits

Each data point is defined
by an 28X28 pixel image

( )

Corresponding number
represented by a 10
element vector
(0,1,2,3,4,5,6,7,8,9)
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Training time ~ 10 min
Error rate ~ 5%

K.Cremanns
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October 5, 2017 17 / 50



Introduction to machine learning

Creation of supervised machine learning models
TU-Berlin stator optimization

o The framework also includes a for

October 5, 2017 18 / 50



Introduction to machine learning

Creation of supervised machine learning models
TU-Berlin stator optimization

The framework also includes a for
o For example , Where

Tp1, T2,y Tp—n OF Yp_1,Yt—2, ..., Yt—n Need to be

considered.

T T



Introduction to machine learning

Creation of supervised machine learning models
TU-Berlin stator optimization

The framework also includes a for
For example , where
Tt 1y Lty ey Tty OF Yp_1,Yt—2, ..., Y+_p Need to be
considered.

o In this case the framework even the

not only dependent on X but also
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> To estimate the of the surrogate model,
R?)red calculated via :
N ~
R2 g=1- 2i=1 (¥ — 9i)?
e Sy (i — B(yi)?

> Predicted vs. observed plot.
o Visual check of the model for example surface plot.
Prediction of

of the prediction.
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The framework provides
the opportunity to give

the of
its
can =
be : \ » ”5/5?:222;
Useful for
and
robust /

reliability analysis.

Example: Branin function
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Metamodel Surface Plot of y
PAM = 0.93(K-fold), 0.93(Loo)
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Metamodel Surface Plot of y
PAM = 0.98(K-fold), 0.98(Loo)
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Metamodel Surface Plot of y
PAM = 1.0(K-fold), 1.0(Loo)
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Key concepts of supervised machine learning
Technical applications areas

Sampling, outlier and variable selection
Deep Gaussian covariance networks
Model validation

@

o Parametric CAD model and CFD setup
o Optimization
o Results
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o The ™ "is a
stator in a measurement rig at
the TU Berlin.

o An initial stator geometry has
been designed based on a

o The task is to reduce the
and to minimize
the at the
outlet over an incidence range.

o) (inlet flow
angle varies £5°).
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o CAD tool
o Overall  input parameters:
o 5 profile sections. N

o 28 main parameters (stagger

 —
angle, camberline, thickness).
o 6 stacking parameters. »
o 31 tuning parameters /
(thickness tuning). //

o 8 endwall contouring
parameters (amplitude,
position).

R Ty I
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o NURBS curve connects three
points.

o Weight of the second point can

be controlled.
Normalized position
of mid point

A
Y

Axial chord length
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LE, TE is given by radius , ellipse
factor and spread angle.

With LE angle the point 1 is created.

With TE angle and the parameter TE
Shape point 2 is created.

NURBS curve connects LE with TE
including point 1 and point 2.

Distance d1 to point 1 is optimized
internally to get a maximum thickness.

Spread angle
definition

Normalized distance

VPOMH

Max thickness

Point2
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X L. x hub Region
o Stacking axis is controlled by 4

points, which can be varied by
its:

theta_dv

o theta angle.
> the distance of the mid points
from inner and outer radii.
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o Shift function can shift the thickness distribution in x and y

direction.

Normalized position
Point 2

Y

Point 3
Point 4

Shift value

~—

Point 1

Shift function /

Point 5
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O In order to place the throat at the leading edge of the profile,
the spread angle of the leading edge is optimized internally.
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> Crosssection of endwall for one
blade passage is represented by
sine function, controlled by:

> Frequency.

> Amplitude.

o Phase shift.
Functions control how these
parameters change in
streamwise direction.
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CFX solver.

Meshing in ICEM.

Spalart-Allmaras turbulence model.

Scalable wall function.

3 operation points with 37°, 42°, 47° inlet whirl angle.
Specific heat coefficient of 1.4.

Inlet total pressure: 102713.0 Pa.

Inlet total temperature: 294.314 K.

Inlet pitch angle: 0°.

Inlet turbulence intensity: 4%.

Outlet massflow of 9.0 kg/s (full annulus).
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B CAESES

- Creates geometry

- Export .ttin file for ICEM

- Controls DoE work-flow

- Check manufacturing contraints.

Design
—_— - ICEM creates mesh
- 3 load cases in CFX

- Calculate objectives

Data for ‘/

surrogate model

Input ool Output

— Optimal design

Optimizer

R T e
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Pre studies within CAESES to

check geometry stability (no
calculations on CFX).

Starting around +-20% of the

initial blade geometry for the
parameters (if possible).

Final DoE with overall

calculations with optimized
LHS.

K.Cremanns
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PAM for eval_PressureLoss37deg = 0.97(K-fold), 0.97(Loo)

camberPos_dv2

camberPos_dv3 B:P-oo0mm0cea0 e cesspeamcesaseo R

camberPos_dv1

camberPos_dv4

stagger_dv3

stagger_dv2

zStart

thickness_tuning_y3_dv4

0.0 0.2 0.4 0.6 0.8 1.0
Importance
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Two optimization criteria, leading to a multi-objective optimization
problem. In addition three operating points have to be considered:

between inlet and outlet
under the constraint of keeping the mass flow at 9.0 +/- 0.1
kg/s (full annulus). The total pressure loss is defined as

loss — Ptotal;,, —Ptotalyyt
Ptotal;,, —Pstatic;,

at the CFD from the
axial direction.

The inlet whirl angle is allowed to vary by + — 5°. Thus
have to be considered.
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The number of blades is fixed to n = 15.
The axial chord of the blade has to be kept constant.

The minimum value for leading and trailing edge radius is
Imm.

The two holes for the fixture in the middle of the blade have a
radius of 2.5 mm and a depth of 20 mm. The blade thickness
at these positions has to accommodate a cylinder of material
with a radius of 5 mm and a depth of 20mm. The two holes
have to be at least 60mm apart from each other.

The blade has to be mountable on a plate of dimensions
200mm x 80 mm.

The reduction of radius due to the hub contouring has to be
<= 5mm and the increase of the radius due to the hub
contouring has to stay below 10mm.
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After the position is obtained,
the drilling angle will be
optimized, to avoid an
intersection of the drilling with
the blade surface.

Drilling angle is the difference
angle to the normal, applied
around the z-axis.
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o NSGA Il optimization
algorithm.

o 300 generations, with 50
population size.

o 15000 overall design
evaluations on surrogate
model.

o) on surrogate
model against
on CFX (32 cores per
operation point).
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Paretofront

Pareto front

16.6|
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g
2 Design no.: 12
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Obj_press [ ]

R T I



Introduction to machine learning

Creation of supervised machine learning models
TU-Berlin stator optimization

Recalculation chosen design

Design point 42°  Off-design 37°  Off-design 47°

Total pressure loss (%) 6.09/6.16 5.95/6.13 7.05/7.39
Rel. error (%) 1.15 3.02 4.82
Exit whirl angle (deg?)  14.98/15.44 12.63/12.95  27.28/27.78
Rel. error (%) 3.07 2.53 1.83

Baseline vs. optimum objective function results

Design point 42°  Off-design 37°  Off-design 47°

Improvement TPL(%) 5.23 2.85 5.98
Improvement EWA(%) 30.57 19.31 28.27
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are capable to handle
different type of problems with , with
and

and deeper knowledge of your
data through sensitivity analysis.
» Multi-objective optimization application TU-Berlin stator with
only and

of and
for both objective functions of for the and
for the
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