High block coefficient ship aft body shape optimization

Presented at the CAESES European Users' Meeting 2017

Michal Orych and Leif Broberg (presenter) FLOWTECH International

Web: <u>www.flowtech.se</u> E-mail: <u>info@flowtech.se</u>

Content of presentation

- Background
- Optimization study
 - Shape variations
 - Objective function
 - Optimization
 - Case study
- Comments
- Conclusions

Background Scope and goals

- Scope
 - Shape optimization of the aft body
 - Full ships
 - High block coefficient
 - Low Froude numbers
- Goals
 - Minimize the delivered power
 - Show that it can be done in a short time with moderate computer resources.

Background Resistance and propulsive efficiency

- Minimizing the power means the following
 - Minimize resistance, wave and viscous
 - Maximize hull efficiency, high wake fraction
- In most cases increasing wake fraction for efficiency will cause higher resistance – a trade-off is necessary to find best performance.

Background Resistance and propulsive efficiency

- Optimum balance between Rt and w is very difficult to find based on resistance and wake results
- Self-propulsion is the best way to achieve optimum solution.

Case study based on Japan Bulk Carrier (JBC)

- JBC is a capesize bulk carrier designed jointly by National Maritime Research Institute (NMRI), Yokohama National University and Ship Building Research Centre of Japan (SRC).
- Towing tank experiments are available from NMRI, SRC and Osaka University, which include resistance tests, self-propulsion tests and PIV measurements of stern flow fields.
- Validation and Verification results using SHIPFLOW presented at Tokyo 2015 Workshop on CFD in Ship Hydrodynamics, Dec. 2-4, 2015

Case study based on Japan Bulk Carrier (JBC)

Main particulars		Full scale
Length between perpendiculars	L _{PP} (m)	280.0
Length of waterline	L _{WL} (m)	285.0
Maximum beam of waterline	B _{WL} (m)	45.0
Depth	D (m)	25.0
Draft	T (m)	16.5
Displacement volume	∇ (m ³)	178369.9
Wetted surface area w/o ESD	S _W (m ²)	19556.1
Wetted surface area of ESD	S _E (m ²)	745.2
Block coefficient (CB)	∇ /(L _{PP} B _{WL} T)	0.8580
Midship section coefficient (CM)		0.9981
LCB (%L _{PP}), fwd+		-2.5475

14.5
0.142

Shape variations Resistance

- To minimize viscous resistance it is necessary to minimize wetted surface
- but without:
 - increasing wave resistance by e.g. too blunt bow
 - viscous pressure resistance by too full stern causing separation.

Shape variations Wake

 To increase hull efficiency and avoid sudden changes of propeller loading the wake should be more circular and concentrated in propeller disc

a flowtech product

Tools

made by FRIENDHSHIP SYSTEMS

- Shape variations
- Optimization methods
- Resource management

- Grid Generation
- Flow simulations
- Result processing

- Hull shape modifications with Surface Delta Shift*
 - Bilge radius
 - Keel line profile of bossing
 - Skeg (gondola) width
 - Section fullness above skeg

* - partially parametric modelling

Objective function / Optimization method

- Objective Minimize the delivered power PD
 - Self-propulsion simulation
 - Scale effects
- Constraints
 - No loss of displacement
- Optimization method: Genetic Algorithm (NSGA-II)

Aft-body optimization of Japan Bulk Carrier (JBC)

• <u>Tools:</u>

- SHIPFLOW and CAESES work environment
- Direct self-propulsion optimization with SHIPFLOW
- Partially parametric modelling with CAESES tools for good control and flexibility of hull modifications
- <u>Conditions:</u>
 - Self-propelled bare hull computations
 - Propeller pitch adjusted to find propulsion point
 - RPM fixed to desired engine
 - Design speed and design draught
- Optimization:
 - 4 independent variables
 - Delivered Power objective function
 - Displacement constraint (not less than baseline)
 - NSGA2 optimization algorithm
 - 12 generations, 24 individuals

CASE A – BASELINE hull

• Verification and Validation in:

KORKMAZ, K. B., ORYCH, M., LARSSON, L., 'CFD Predictions Including Verification and Validation of Resistance, Propulsion and Local Flow for the Japan Bulk Carrier (JBC) with and without an Energy Saving Device', *Proceedings, Tokyo 2015 Workshop on CFD in Ship Hydrodynamics.* 2015.

The resistance maximum comparison error

of about 1.2%. The delivered power was underpredicted by 6% which was thought to be a result of a slight wake overestimation

CASE B - Resistance optimization at model scale

- Reynolds number: 7.46e6
- Module: XCHAP using Krylov solver (SHIPFLOW 6.3)
- Fine grid, zonal approach, 1.2M cells (automatically generated from iges)
- 15 minutes per case (Intel i7 5960X)
- 288 designs investigated

owtech product

 1.2% decrease in RT at model scale (w.r.t. baseline)

CASE C - Self-propulsion optimization at model scale

- Reynolds number: 7.46e6
- Module: XCHAP using Krylov solver (SHIPFLOW 6.3)
- Medium grid with refinement, zonal approach, both sides, 3.0M cells (automatically generated from iges)
- Self-propulsion with integrated lifting line propeller model
- 4 cases per hour on a 4 node cluster (Intel Xeon X5675)
- 288 designs investigated

wtech product

3.7% decrease in PD at model scale (w.r.t. baseline)

CASE D - Self-propulsion optimization at full scale

- Reynolds number: 2.10e9
- The same as the setup for "C" but with additional cells in normal direction (50% extra)
- 0.35% decrease in PD at full scale

Cross-comparisons: model scale <u>RT</u> vs <u>PD</u>

- Hull B (optimized for min. RT at model scale):
 - has the lowest RT
 - But at the same time highest PD
 - Lower nominal wake than A (baseline)
 - Streamlined but not efficient

SH

a flowtech product

Cross-comparisons: model scale <u>RT</u> vs <u>PD</u>

- **Hull C** (optimized for min. PD at model scale):
 - Higher RT than hull B
 - But at the same time Lower PD

SHI

a flowtech product

Cross-comparisons: model scale <u>RT</u> vs <u>PD</u>

- **Hull D** (optimized for min. PD at full scale):
 - Higher RT than hull C

SF

a flowtech product

 and Higher PD at model scale

Cross-comparisons: <u>model scale</u> PD vs <u>full scale</u> PD

- **Hull C** (optimized for min. PD at model scale):
 - Higher PD at full scale
 than hull D

SH

a flowtech product

Cross-comparisons: <u>model scale</u> PD vs <u>full scale</u> PD

• **Hull D** (optimized for min. PD at full scale):

SH

a flowtech product

- Higher PD at model scale
- But Lower PD at full scale

Some additional points

- Deformation techniques
 - Free box deformation can be better than delta surface shift in some cases e.g. for bulbs and skeg profile

Comments

- Constraints
 - Displacement
 - Appropriate penalty important
 - Design expected to be close to minimum displacement
- Optimization Approach
 - Wave resistance with XPAN:
 - TSearch or Sobol+TSearch if exploration is necessary
 - Viscous resistance and self-propulsion with XCHAP:
 - Genetic algorithm NSGA2
 - Note that the method selection will depend on the specific problem.

Comments

- CAESES and SHIPFLOW is an excellent environment for hydrodynamic optimizations
 - Partially parametric modelling delivered by CAESES gives very good control and flexibility of hull modifications, both global and local
 - SHIPFLOW is an efficient tool for self-propulsion simulations at model and full scale
- Aft body shape optimization of high block coefficient ship

For best results:

- optimize in self-propulsion condition
- optimize directly at full scale.

Thank You

FLOWTECH International AB

Web: www.flowtech.se

E-mail: info@flowtech.se

