

European CAESES[®] User Meeting

2017

Robust Variable Geometry from CAESES[®] as Clean Input for FINE[™]

Contents		NUMECA
1	Coupling CAESES [®] & FINE™	
2	Cloud Based Optimization of a Powerboat	
3	Optimization of a Volute (Historical)	
4	Lesson Learned: Project GAMMA-1	

Coupling CAESES[®] & FINE[™]

Historical Coupling (2012)

Coupling Today

Copyrig NUME Ingenieurbür VUMECA

4

Optimization Loop **Upfront CAD Upfront Optimization** • Simulation-ready • Design explorations • Highly automated • Formal optimization Optimisation & Variable Software Pre- \Rightarrow Assessment Geometry processing Connection FINE[™]/Marine Package HEXPRESS™ CFView™ FINE[™]/Marine Hexaeder Mesher Postprocessing ISIS Processing & Solving

HPC by CPU24/7

Introduction & Motivation

Object of desire: RIVA Junior (1966)

- Fast & small hard chine powerboat
- Classic planning hull design by Carlo Riva

Why pick a powerboat for optimisation?

- Low Froude Number optimisation is widely used already – only little is published for high Froude Number
- Hydrodynamics of planning hulls require high-fidelity viscous calculations
- Coupling of vessel motion & fluid forces

This is a challenging case – ideal to show an efficient setup for the coupling of a parametric model (CAESES[®]) with a free surface CFD code (FINE[™]/Marine) and baremetal CPU resources (CPU24/7)

Riva Main Dimensions & Operating Conditions

Riva Junior						
Length over all	5.86	[m]				
Lenght DWL	4.98	[m]				
Draft	0.32	[m]				
Beam at transom	1.6	[m]				
Displacement	1.357	[m³]				
Total Resistance*	1900	[N]				

CFD Operating Conditions						
Vessel Speed	18.0	[kn]				
Froude Number	1.32	[-]				
Speed Coefficient	2.34	[-]				
Total Mass	1300	[kg]				

*Total Resistance according to Savitsky Theory (1964) for a trim of 5°

Powerboat in the Cloud – CAE Chain

- CAESES[®] & FINE[™]/Marine are batch capable
- Pre-requisite for any automated setup and otimization
- Creation of the new geometry and CFD domain, triangulation -> STL file [CAESES[®]]
- Complete CFD setup via the C-Wizard
- Run the simulation(s)
- Collect CFD results & import in CAESES[®]
- Continue with next design

Parameters, Constraints & Objectives

- 10 parameters selected for variation.
- Focus on the planning surface & the spray rail
- One operating point: 18kn
- Displacement kept constant 1.3m³

Copyrig NUME Ingenieurbür

Parameter	Min. Value	Base Value	Max Value
Beam	2.1	2.2	2.3
Dead rise at transom	12	14	16
Rocker	0.13	0.14	0.17
Rel. hollowness at keel	0	0	0.05
Rel. hollowness at stern	0	0	0.1
Rel. hollowness in aft			
freeboard	0.65	0.7	0.08
4 parameters for spray rail			

Powerboat in the Cloud – Parametric Model – Hull Form [FPM]

Powerboat in the Cloud – Parametric Model – Global Dimensions

Ž.

Powerboat in the Cloud – Parametric Model – Local Fine Tuning

Baseline: Geometry & Wave Elevation

Best DoE Design: Geometry & Wave Elevation

Optimised Design [T-Search]: Geometry & Wave Elevation

NUMECA

Copyrig NUME Ingenieurbür

2

Cloud Based Optimization of a Powerboat

Worst DoE Design: Geometry & Wave Elevation

Optimisation Successful – But Where Does the Gain Come From?

- Achivement: -7% resistance. Can be exploited:
 - less fuel consumption
 - higher end speed
 - decreased necessary engine power [probably the least preferable for a powerboat]
- But 7% also demonstrates how well designed the original Riva Junior really is!
- But since we do have computer power now where does the decrease in resistance originate?

Copyrig NUME Ingenieurbür

Resistance Components Breakdown – Baseline

Copyrig NUME Ingenieurbür

Resistance Components Breakdown – Baseline vs. Optimised

Copyrig NUME Ingenieurbür

Magnitude of Viscous Stress – Baseline vs. Optimised

2

Cloud Based Optimization of a Powerboat

Static Pressure – Baseline vs. Optimised

Free Surface – Baseline vs. Optimised

Free Surface – Baseline vs. Optimised

Optimization of a Volute (Historical)

Optimization of a Volute (Historical) Definition For the Maritime Guys

- What is a volute?
- A volute usually belongs to a radial compressor or turbine!
- A radial compressor turns at high RPM, sucks in gas from the axial direction and blows it out into the radial direction.

Optimization of a Volute (Historical)

Definition For the Maritime Guys

- In most technical applications a radial outlet over the full circumference is hardly usable.
- A volute collects the radially exiting gas and guides into the desired direction.

3

Optimization of a Volute (Historical)

Parameter Definition

Optimization of a Volute (Historical)

Tongue Width Variation

Optimization of a Volute (Historical) Variation of Shape & Area Distribution

Optimization of a Volute (Historical) True Result

Absolute Total Pressure (Pa)

Increase in Efficiency: 0% !!

2-Stage Turbocharger of a Modern Gasmotor

Objective: Simultaneous Optimization of Impeller, Diffuser & Volute

First Step: Optimization of Volute & Diffuser

Rotation

Final Objective: Simultaneous Optimization of Impeller, Diffuser & Volute

Copyrig NUME Ingenieurbür

35

VUMECA Ingenieurbüro

Base: Input from CAESES®

- Parametrisation
 - A/R Ratio
 - Incidence
 - Volume Restriction
- Robust Tongue Area
- Supporting Geometry

Key: Automatic Structured Meshing of a Volute

We are close....

29.03.2017 Working Meeting 1

22.06.2017 Working Meeting 2

Key: Automatic Structured Meshing of a Volute

... but still not there!

2017

Thank you for your attention