

Depresent Seek + SHARE + LISTEN + CHAMPION

inclusion.cat.com

Caterpillar Marine Powers Work on the Water

Cargo

Cruise and Ferry

High Performance

Commercial Workboat

Caterpillar Marine

Products

Propeller Design

Preliminary design

Drawing, reports for classification, design data, 2D-data

Low-fidelity tools

Boundary Element Method (BEM)

- Based on and adapted for propellers
- Fast and automatic
- Accurate in design conditions

Possibilities:

- Prediction of thrust /torque etc with high accuracy
- Prediction of cavitation behaviour and inception
- Pressure fluctuations (pulses) from sheet cavitation (1st BPF)
- Broadband pressure fluctuations and underwater radiated noise (URN)

Computations

- Automatic 3D-geometry including fillet generated directly by CAESES
- Direct connections implemented to the following design tools
 - OpenFOAM (CFD-Code)
 - ANSYS (FEM-Code)
 - PROCAL (BEM-Code)
- Possibility to monitor e.g. Propeller efficiency, stress due to hydrodynamic loads, cavitation properties etc. as design is made with just a click. Saves a significant amount of time for each blade design

Caterpillar Marine

Hydro loads

- Hydro loads are computed using BEM
- CAESES geometry is exported to ANSYS
- BEM loads on blade is extracted and mapped to ANSYS grid
- Using one software connection

Ice loads

- Ice loads are computed using the class rules
- Loads, application surfaces and geometry are exported by CAESES

Caterpillar Marine

High-fidelity tools

- Hull Resistance
- Powering Estimations
- Wake Field
- Scale Effects
- Propeller Design Evaluation

OpenFOAM

• An automatic grid- and solve- sequence using OpenFOAM from an stl-input has been developed and validated, giving satisfacory results

References

AHTS

Name:

Loke Viking

Type:

AHTS **Length:**

86 m

Builder:

Astilleros Zamakona

Engines:

14 000 kW MaK

Propulsion:

Berg 1230 BCP Twin Screw

RESEARCH

Name:

Polarcus Samur

Type:

Seismic Survey Vessel

Length: 84 m

Builder:

Drydocks World, Dubai

Engines:

7400 kW Electric motors

Propulsion:

Berg BCP 1140 Twin - Ice 1A

CARRIER

Name:

Sigrid

Type:

Spent Nuclear Fuel Carrier

Length: 99,5 m

Builder:

Damen Shipyards, NL

Engines:

1938 kW MaK

Propulsion:

Berg BCP 950f Twin, BFTT 315 Twin

谢谢

ありがとうございました Bedankt

Děkuji

СПАСИБО

MERCI

GRAZIE

THANK YOU!

TACK

OBRIGADO

GRACIAS

DZIĘKUJĘ

TERIMA KASIH

KÖSZÖNJÜK

감사

நன்றி

DANKE

