Payload and Resistance Optimization of a SWATH Model via Design Space Dimensionality Reduction, CFD, and Multi-fidelity Surrogate Models

R. Pellegrini1, A. Serani1, S. Harries2, and M. Diez1

1CNR-INSEAN, National Research Council - Marine Technology Research Institute, Rome, Italy
{riccardo.pellegrini, andrea.serani}@insean.cnr.it; matteo.diez@cnr.it
2Friendship Systems AG, Potsdam, Germany
harries@friendship-systems.com

The work is supported by the US Office of Naval Research Global, NICOP grant N62909-15-1-2016, under the administration of Dr Woei-Min Lin, Dr. Salahuddin Ahmed, and Dr. Ki-Han Kim, and by the Italian Flagship Project RITMARE, founded by the Italian Ministry of Education.
Outline

- Introduction
 - CNR-INSEAN
 - Background of simulation-based design optimization (SBDO)
 - Objective: multi-objective optimization problem
 - Approach

- Design-space dimensionality reduction by Karhunen-Loève Expansion
- SWATH geometry variations from CAESES
- CFD code WARP
- Adaptive multi-fidelity metamodel
- Multi-objective deterministic particle swarm optimization algorithm
- Numerical results
- Conclusions and future work
CNR-INSEAN: Marine Technology Research Institute, Italy

CNR-INSEAN: Numerical / Experimental research on naval hydrodynamics and marine engineering; 145 people (65 researchers, research engineers and temporary positions); All in-house: simulation codes & hardware (design, production, testing).

- Numerical modeling and simulations for hydrodynamics of hull, propeller, wave breaking, sloshing, hydroacoustics, structures
- Simulation-based design methods including validation experiments

- Towing tanks
- Circulating water channel
- Cavitation tunnel
- Maneuvering basin (Nemi Lake)
- Hydraulic channel
- Sloshing lab
- High-speed ditching
- Mechanical, electronic, equipment workshops
- Woodshop
Simulation-based design optimization

Design
Build
Test

Build-and-test

Increased computational resources

Simulation-based design optimization

Design
Optimization
Simulation

CAESES European Users' Meeting 2017
03/10/2017
Multi-objective optimization problem

The optimization addresses

- total resistance (R_T) minimization (18 kn)
- payload maximization (∇)

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Value [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_{OA}</td>
<td>36.50</td>
</tr>
<tr>
<td>D</td>
<td>4.50</td>
</tr>
<tr>
<td>D_H</td>
<td>20.00</td>
</tr>
<tr>
<td>L_1</td>
<td>6.00</td>
</tr>
<tr>
<td>S_L</td>
<td>12.00</td>
</tr>
<tr>
<td>S_C</td>
<td>5.15</td>
</tr>
<tr>
<td>T</td>
<td>6.31</td>
</tr>
<tr>
<td>S_W</td>
<td>1064 [m²]</td>
</tr>
<tr>
<td>A_{WP}</td>
<td>38.88 [m²]</td>
</tr>
</tbody>
</table>

No constraints are imposed for this preliminary application

Objectives functions

<table>
<thead>
<tr>
<th>Objective</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>∇</td>
<td>982.23 [m³]</td>
</tr>
<tr>
<td>R_T (HF, 18 kn)</td>
<td>4.816E5 [N]</td>
</tr>
</tbody>
</table>

Approach - INSEAN SBDO Framework

Design space dimensionality reduction
- Geometry-based KLE ✓
- Combined geometry- and physics-based KLE ✓

Shape manipulation
- FFD ✓
- Orthogonal patches ✓
- Morphing ✓

Design conditions
- Deterministic
- Stochastic

Uncertainty quantification
- Monte Carlo simulation ✓
- Importance sampling ✓

Dynamic/adaptive metamodel
- Stochastic
- Deterministic

Before optimization

Verify and validation
- Original design ✓
- Optimized design ✓

Global optimization
- Derivative-free ✓
- Single/multi-objective ✓
- Hybrid global/local ✓
- Synchronous/asynchronous ✓
- Bio-inspired ✓

Analysis tools

Before optimization

Hydrodynamics (URANS, potential flow) ✓
- Structures (FEM) ✓
- Multi-disciplinary and FSI ✓
Design-space dimensionality reduction - Underlying idea

\[\min_{\mathbf{u} \in \mathcal{U}} \text{obj}(\mathbf{u}) \]

“uncertain” shape design variable vector

- Before going through the optimization process, one does not know (yet) where the optimal design is
- The optimum is unknown and its identification may be considered as a problem affected by epistemic uncertainty (Diez et al., CMAME, 2015)
- One may consider the (uncertain) design variable vector \(\mathbf{u} \) as belonging to a stochastic domain \(\mathcal{U} \) with associated probability density function \(f(\mathbf{u}) \), \(\mathbf{u} \in \mathcal{U} \)

Design-space dimensionality reduction - Definitions

- Generalized inner product
\[(f, g)_\rho = \int_{\mathcal{G}} \rho(x)f(x) \cdot g(x)dx\]

- Mean shape modification
\[
\langle \delta \rangle = \int_{\mathcal{U}} \delta(x,u)f(u)du
\]

- Geometric variance (key element)
\[
\sigma^2 = \langle ||\hat{\delta}||^2 \rangle = \int_{\mathcal{U}} \int_{\mathcal{G}} \rho(x)\hat{\delta}(x,u) \cdot \hat{\delta}(x,u)f(u)dxdu
\]

- Design variable (uncertain)
\[u\]

- Spatial variable
\[x\]

- Ensemble average over \(u\)
\[\hat{\delta} = \delta - \langle \delta \rangle\]

- Weight function
\[\rho(x)\]
Design-space dimensionality reduction – Problem statement

- Basis of orthonormal functions (KLE)

\[\tilde{\delta}(x,u) = \sum_{k=1}^{\infty} \alpha_k(u)\varphi_k(x) \]

- Geometric variance expressed as

\[\sigma^2 = \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \langle \alpha_k \alpha_j \rangle (\varphi_k, \varphi_j)_{\rho} = \sum_{j=1}^{\infty} \langle \alpha_j^2 \rangle = \sum_{j=1}^{\infty} \langle (\tilde{\delta}, \varphi_j)^2 \rangle_{\rho} \]

- Formulation of a variational problem

\[\max_{\varphi \in L^2_\rho(G)} J(\varphi) = \left\langle (\tilde{\delta}, \varphi_j)^2 \right\rangle_{\rho} \]

subject to \((\varphi, \varphi)^2_{\rho} = 1 \)

- The variational problem solution is

\[\mathcal{L}\varphi(x) = \int_{G} \langle \delta(x,u) \otimes \delta(y,u) \rangle \varphi(y) dy = \lambda \varphi(x) \]
Design-space dimensionality reduction – Discretization

- Considering the variational problem solution

\[\mathcal{L} \varphi(x) = \int_G \langle \delta(x,u) \otimes \delta(y,u) \rangle \varphi(y) dy = \lambda \varphi(x) \]

- Define a 3-D (cartesian) basis of orthogonal unit vector \(\{e_q\}_{q=1}^3 \) is possible to write

\[\delta(x,u) = \sum_{q=1}^{3} \delta_q(x,u) e_q, \quad \varphi(x) = \sum_{q=1}^{3} \varphi_q(x) e_q \]

- which yields

\[\sum_{q=1}^{3} \int_G \langle \delta_p(x,u) \delta_q(y,u) \rangle \varphi_q(y) dy = \lambda \varphi_p(x) \]

- Discretizing the variable of integration \(y \) (therefore the geometry) with \(L \) elements of dimension \(\Delta G_j \) and centroid at \(x_j, j = 1, \ldots, L \)

\[\sum_{q=1}^{3} \sum_{j=1}^{L} \langle \delta_p(x_i,u) \delta_q(x_j,u) \rangle \varphi_q(x_j) \Delta G_j = \lambda \varphi_p(x_i) \]
This form can be discretized as

\[
\sum_{q=1}^{3} \sum_{j=1}^{L} (\delta_p(x_i, u) \delta_q(x_j, u)) \varphi_q(x_j) \Delta G_j = \lambda \varphi_p(x_i)
\]

\[
d_p(u) = \left\{ \begin{array}{c}
\gamma_p(x_1, u_k) \\
\vdots \\
\gamma_p(x_L, u_k)
\end{array} \right\} - \frac{1}{S} \sum_{k=1}^{S} \left\{ \begin{array}{c}
\gamma_p(x_1, u_k) \\
\vdots \\
\gamma_p(x_L, u_k)
\end{array} \right\}
\]

\[
\gamma_p = \gamma \cdot e_p
\]

\[
D_p = [d_p(u_1) \ldots d_p(u_S)]
\]

\[
R_{pq} = \frac{1}{S} D_p D_q^T
\]

\[
W = [\Delta G_i \delta_{ij}]
\]
Design-space dimensionality reduction – Implementation

- This form can be discretized as

\[
\sum_{q=1}^{3} \sum_{j=1}^{L} \langle \delta_p(x_i, u) \delta_q(x_j, u) \rangle \varphi_q(x_j) \Delta G_j = \lambda \varphi_p(x_i)
\]

\[
d_p(u) = \begin{bmatrix}
\gamma_p(x_1, u_k) \\
\vdots \\
\gamma_p(x_L, u_k)
\end{bmatrix} - \frac{1}{S} \sum_{k=1}^{S} \begin{bmatrix}
\gamma_p(x_1, u_k) \\
\vdots \\
\gamma_p(x_L, u_k)
\end{bmatrix}
\]

\[
\gamma_p = \gamma \cdot e_p
\]

\[
D_p = [d_p(u_1) \ldots d_p(u_S)]
\]

\[
R_{pq} = \frac{1}{S} D_p D_q^T
\]

\[
W = [\Delta G_i \delta_{ij}]
\]

\[
\sum_{q=1}^{3} \sum_{j=1}^{L} [R_{pq} W]_{ij} \{z_q\}_j = \lambda \{z_p\}_i
\]

\[
A_{ij}
\]
Design-space dimensionality reduction – Implementation

- This form can be discretized as

\[\sum_{q=1}^{3} \sum_{j=1}^{L} \langle \delta_p(x_i, u) \delta_q(x_j, u) \rangle \varphi_q(x_j) \Delta G_j = \lambda \varphi_p(x_i) \]

\[d_p(u) = \begin{bmatrix} \gamma_p(x_1, u_k) \\ \vdots \\ \gamma_p(x_L, u_k) \end{bmatrix} - \frac{1}{S} \sum_{k=1}^{S} \begin{bmatrix} \gamma_p(x_1, u_k) \\ \vdots \\ \gamma_p(x_L, u_k) \end{bmatrix} \]

\[\gamma_p = \mathbf{y} \cdot e_p \]

\[D_p = [d_p(u_1) \, \ldots \, d_p(u_S)] \]

\[R_{pq} = \frac{1}{S} D_p D_q^T \text{ Covariance matrix} \]

\[W = [\Delta G_i \delta_{ij}] \]

\[Az = \lambda z \]
Design-space dimensionality reduction – “How to use”

- Property: each eigenvalue (KL value) equal the variance retained by the associated eigenfunction (KL mode)

\[\lambda_k = \langle \alpha_k^2 \rangle \]

\[\sigma^2 = \sum_{k=1}^{\infty} \lambda_k \]

- Dimensionality reduction with confidence level \(l \)

\[\hat{\delta}(x, \nu) = \sum_{k=1}^{N} \alpha_k(\nu) \varphi_k(x) \]

\[\sum_{k=1}^{N} \lambda_k \geq l \sum_{k=1}^{\infty} \lambda_k = l \sigma^2 \]

\(N \) is the new (reduced) dimensionality of the design space

New representation of the shape modification (new design space, ROM)

New design variables

Variance retained by each KLE eigenfunction

Total variance
Design-space dimensionality reduction – “How to use”

- Property: each eigenvalue (KL value) equal the variance retained by the associated eigenfunction (KL mode)

\[\lambda_k = \langle \alpha_k^2 \rangle \]

\[\sigma^2 = \sum_{k=1}^{\infty} \lambda_k \]

- Dimensionality reduction with confidence level \(l \)

\[\hat{\delta}(x, \nu) = \sum_{k=1}^{N} \alpha_k(\nu) \varphi_k(x) \]

The use of orthonormal basis allows for sensitivity analysis of not correlated variables

\[\sum_{k=1}^{N} \lambda_k \geq l \sum_{k=1}^{\infty} \lambda_k = l\sigma^2 \]

\(N \) is the new (reduced) dimensionality of the design space

New representation of the shape modification (new design space, ROM)
Design-space dimensionality reduction – “How to use”

- Property: each eigenvalue (KL value) equal the variance retained by the associated eigenfunction (KL mode)

\[\lambda_k = \langle \alpha_k^2 \rangle \]

- Dimensionality reduction with confidence level \(l \)

\[\sum_{k=1}^{N} \lambda_k \geq l \sum_{k=1}^{\infty} \lambda_k = l \sigma^2 \]

New representation of the shape modification (new design space, ROM)

\[\delta(x, u) = \sum_{k=1}^{N} \alpha_k(u) \varphi_k(x) \]

All the geometric constraints are respected

\[\sum_{k=1}^{N} \lambda_k = \sigma^2 \]

\(\lambda_k \) variance retained by each KLE eigenfunction

\(\sigma^2 \) total variance

\(N \) is the new (reduced) dimensionality of the design space
Before optimization – Reference geometry modifications

- Reference geometry variations

27 Parameters
 - ±15% Range variation
 - Definition of the geometric constraints (to avoid infeasible geometries!)

CAESES© Sobol engine
 - 12000 geometry variations
Results

- The eigenvalues are convergent with respect to the number of designs,
- 4 modes are sufficient for retaining more than 95% of the original variance,
- From 27 to 4 variables, more than 85% dimensionality reduction.
Design-space dimensionality reduction by KLE - modes

- First four KL modes φ

![Images of KL modes for X, Y, and Z axes]
Design-space dimensionality reduction by KLE - modes

- First four KL modes φ

![Diagram of KL modes](image)
Design-space dimensionality reduction by KLE - modes

- First four KL modes φ

\[\begin{align*}
\varphi_1 & \quad \varphi_2 & \quad \varphi_3 & \quad \varphi_4 \\
X & \quad Z & \quad Z & \quad Z \\
Y & \quad Y & \quad Y & \quad Y \\
Z & \quad Z & \quad Z & \quad Z \\
\end{align*} \]
Design-space dimensionality reduction by KLE - modes

- First four KL modes φ

![Graphs of KL modes φ_1 to φ_4 in the X, Y, and Z dimensions.](image)
Design-space dimensionality reduction by KLE - modes

- First four KL modes φ

φ_1

φ_2

φ_3

φ_4
Potential flow solver

- Wave Resistance Program (WARP)
 - Fixed body
 - Double model linearization
 - Intel Xeon E5-1620 v2 @3.70GHz
 - HF steady linear potential flow code
 - fine body/surface grids
 - 4 minutes wall-clock time
 - LF steady linear potential flow code
 - coarse body/surface grids
 - 1 minute wall-clock time

<table>
<thead>
<tr>
<th>Grid</th>
<th>G1</th>
<th>G2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upstream extension</td>
<td>1.5 L_{OA}</td>
<td></td>
</tr>
<tr>
<td>Downstream extension</td>
<td>3.5 L_{OA}</td>
<td></td>
</tr>
<tr>
<td>Sideways extension</td>
<td>1.5 L_{OA}</td>
<td></td>
</tr>
<tr>
<td>Body panels</td>
<td>5.2 k</td>
<td>2.6 k</td>
</tr>
<tr>
<td>Surface panels</td>
<td>6.0 k</td>
<td>3.0 k</td>
</tr>
</tbody>
</table>

Potential flow solver

- Sensitivity analysis

\[
\begin{align*}
\alpha_1 &= \{-1, 1\} \\
\alpha_2 &= 0 \\
\alpha_3 &= 0 \\
\alpha_4 &= 0 \\
\alpha_1 &= 0 \\
\alpha_2 &= \{-1, 1\} \\
\alpha_3 &= 0 \\
\alpha_4 &= 0 \\
\alpha_1 &= 0 \\
\alpha_2 &= 0 \\
\alpha_3 &= \{-1, 1\} \\
\alpha_4 &= 0 \\
\alpha_1 &= 0 \\
\alpha_2 &= 0 \\
\alpha_3 &= 0 \\
\alpha_4 &= \{-1, 1\}
\end{align*}
\]
Adaptive multi-fidelity metamodel (AMFM)

- AMFM

The adaptive sampling procedure is based on metamodel uncertainty minimization.

Adaptive multi-fidelity metamodel (AMFM) - Results

- AMFM uncertainty convergence
 - The sensitivity analysis is also the training set (17 HF and LF simulations)
 - Available budget of 100 iterations

\[
\begin{array}{|c|c|}
\hline
\text{Fidelity} & \text{Number of simulations} \\
\hline
H & 17+10 \\
L & 17+100 \\
\hline
\end{array}
\]

Table of Fidelities and Number of Simulations
Multi-objective deterministic particle swarm optimization

- MODPSO
 - Meta-heuristic algorithm based on the metaphor of a flock of bird or bees searching for food [2]
 - **Personal attractor**: minimum of the aggregated function
 - **Global attractor**: closest point of social solution set
 - Hammersley sequence sampling initialization over domain and boundaries, with non-null velocity
 - $8N_{dv}N_{of}$ particles
 - $\chi=0.721$
 - $c_1 = c_2 = 1.655$

\[
\begin{align*}
 v_{i}^{k+1} &= \chi[v_{i}^{k} + c_1(x_{i,pb} - x_{i}^{k}) + c_2(x_{i,gb} - x_{i}^{k})] \\
 x_{i}^{k+1} &= x_{i}^{k} + v_{i}^{k+1}
\end{align*}
\]

- k is iteration counter
- i is the particle index
- v is the particle velocity
- x is the particle position

Simulation-based hull-form optimization

- Non-dominated solution set and most promising configurations performances
 - The optimization is performed with a deterministic formulation of multi-objective particle swarm optimization algorithm

<table>
<thead>
<tr>
<th>Design</th>
<th>ΔL₀A %</th>
<th>ΔSₘ %</th>
<th>ΔAₜw %</th>
<th>AMFM</th>
<th>WARP</th>
<th>AMFM</th>
<th>WARP</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>20.55</td>
<td>19.60</td>
<td>-5.65</td>
<td>-28.30</td>
<td>-24.30</td>
<td>22.70</td>
<td>22.80</td>
</tr>
<tr>
<td>C</td>
<td>21.64</td>
<td>20.10</td>
<td>-11.42</td>
<td>-26.70</td>
<td>-25.70</td>
<td>25.20</td>
<td>25.10</td>
</tr>
</tbody>
</table>
Optimized hull-form
Optimized hull-form

Lower pressure gradients on hull
Optimized hull-form

- Lower pressure gradients on hull
- Reduced diverging Kelvin wave
Conclusions

- The hull-form optimization of a SWATH model, addressing the total resistance reduction (at 18 kn) and the displacement maximization, has been presented
 - The parametric CAD models has been produced with CAESES© software
 - The geometric variations have been produced with the CAESES © Sobol engine
 - The design-space has been reduced with the KLE method
 - The stochastic radial basis functions based multi-fidelity metamodel has been used to predict the model performances
 - The optimization has been performed with a deterministic formulation of multi-objective particle swarm optimization algorithm

- The design variables has been reduced from 27 to 4 (85% of reduction), retaining more than 95% of the original variance

- The AMFM maximum uncertainty has been reduced to 9.1% and 5.6% of the original function range for the total resistance and displacement, respectively

- 27 high- and 117 low-fidelity evaluations have been performed

- The optimal design achieves a reduction of the total resistance about 25% and an increase of the displacement about 25%
Ongoing/Future work

- Non-linear KLE [1]
 - E.g. deep auto-encoder

- Inclusion of physical parameters in KLE
 - The variational analysis takes into account also the physical effects of the geometry modification

- Use of high-fidelity CFD codes [2]
 - Xnavis, developed at CNR-INSEAN

- Use of hybrid global/local algorithms
 - Combination of MODPSO and linesearch-type algorithms

- Development of parallel strategies for the AMFM update
 - Take advantage of HPC cluster

Thank you!

Questions ??
Suggestions ?!?!?!