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Outline

▪ Introduction
➢ CNR-INSEAN

➢ Background of simulation-based design optimization 
(SBDO) 

➢ Objective: multi-objective optimization problem

➢ Approach

▪ Design-space dimensionality reduction by 
Karhunen-Loève Expansion

▪ SWATH geometry variations from CAESES

▪ CFD code WARP

▪ Adaptive multi-fidelity metamodel

▪ Multi-objective deterministic particle swarm
optimization algorithm

▪ Numerical results

▪ Conclusions and future work
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CNR-INSEAN: Marine Technology Research Institute, Italy

• Numerical modeling and simulations for hydrodynamics of 
hull, propeller, wave breaking,sloshing, hydroacoustics, 
structures

• Simulation-based design methods including validation 
experiments

• Mechanical, electronic, 
equipment workshops 

• Woodshop

• Towing tanks
• Circulating water channel
• Cavitation tunnel
• Maneuvering basin (Nemi Lake)
• Hydraulic channel
• Sloshing lab
• High-speed ditching

CNR-INSEAN: Numerical / Experimental research

on naval hydrodynamics and marine engineering;

145 people (65 researchers, research engineers 

and temporary positions); All in-house: simulation 

codes & hardware (design, production, testing).
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Simulation-based design optimization
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Multi-objective optimization problem 

▪ The optimization addresses 
➢ total resistance (RT) minimization (18 kn)

➢ payload maximization (   )
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No constraints
are imposed for 
this preliminary

application

DDH

L1

LO

A Water 
line

Pellegrini R., Serani A., Harries S., and Diez M. “Multi-objective hull-form optimization of a SWATH configuration via design-space dimensionality 
reduction, multi-fidelity metamodels, and swarm intelligence” In proceedings of 7th International conference on Computational Methods in 
Marine Engineering (MARINE 2017), 15-17 May 2017, Nantes, France.

Dimension Value [m]

LOA 36.50

D 4.50

DH 20.00

L1 6.00

SL 12.00

SC 5.15

T 6.31

SW 1064 [m2]

AWP 38.88 [m2]

Objective
functions

Value

982.23 [m3]

RT (HF, 18 kn) 4.816E5 [N]




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Approach - INSEAN SBDO Framework
Design space 

dimensionality reduction
✓ Geometry-based KLE
✓ Combined geometry-

and physics-based KLE

Shape manipulation
✓ FFD
✓ Orthogonal 

patches
✓ Morphing

Uncertainty 
quantification
✓ Monte Carlo 

simulation
✓ Importance 

sampling
Dynamic/adaptive metamodel

stochastic

deterministic

Computer simulations
✓ Hydrodynamics (URANS, potential 

flow)
✓ Structures (FEM)
✓ Multi-disciplinary and FSI

Dynamic/
adaptive 

metamodel

Global optimization
✓ Derivative-free
✓ Single/multi-objective
✓ Hybrid global/local
✓ Synchronous/asynchronous
✓ Bio-inspired
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Design-space dimensionality reduction - Underlying idea

“uncertain” shape design variable vector

𝑢1
𝑢2

𝑜𝑏𝑗

min
𝒖∈𝒰

𝑜𝑏𝑗(𝒖)

▪ Before going through the optimization process, one does not know (yet) where 
the optimal design is

▪ The optimum is unknown and its identification may be considered as a problem 
affected by epistemic uncertainty (Diez et al., CMAME, 2015)

▪ One may consider the (uncertain) design variable vector 𝒖 as belonging to a 
stochastic domain𝒰 with associated probability density function f (𝒖), 𝒖 ∈ 𝒰

Diez, M., Campana, E. F., & Stern, F. (2015). Design-space dimensionality reduction in shape optimization by Karhunen–Loève expansion. 
Computer Methods in Applied Mechanics and Engineering, 283, 1525-1544.



𝒖 design variable (uncertain)
𝒙 spatial variable
⋅ ensamble average over 𝒖
෡𝜹 = 𝜹 − 𝜹
𝜌(𝒙) weight function

▪ Generalized inner product

▪ Mean shape modification

▪ Geometric variance (key element)
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Design-space dimensionality reduction - Definitions

𝒇, 𝒈 𝜌 = න
𝒢

𝜌 𝒙 𝒇(𝒙) ⋅ 𝒈 𝒙 𝑑𝒙

𝜹 = න
𝒰

𝜹 𝒙, 𝒖 𝑓 𝒖 𝑑𝒖

𝜎2 = ||෡𝜹||2

= න
𝒰

න
𝒢

𝜌(𝒙)෡𝜹(𝒙, 𝒖) ⋅ ෡𝜹 𝒙, 𝒖 𝑓 𝒖 𝑑𝒙𝑑𝒖



Design-space dimensionality reduction – Problem statement

▪ Basis of orthonormal functions (KLE)

▪ Geometric variance expressed as

▪ Formulation of a variational problem

▪ The variational problem solution is
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𝒖 design variable (uncertain)
𝒙 spatial variable
⋅ ensamble average over 𝒖
෡𝜹 = 𝜹 − 𝜹
𝜌(𝒙) weight function

෡𝜹 𝒙, 𝒖 = ෍

𝑘=1

∞

𝛼𝑘(𝒖)𝝋𝑘(𝒙)

𝜎2 = ෍

𝑘=1

∞

෍

𝑗=1

∞

𝛼𝑘𝛼𝑗 𝝋𝑘 , 𝝋𝑗 𝜌
=෍

𝑗=1

∞

𝛼𝑗
2 =෍

𝑗=1

∞

෡𝜹,𝝋𝑗 𝜌

2

max
𝝋∈ℒ𝜌

2(𝒢)
𝑱 𝝋 = ෡𝜹,𝝋𝑗 𝜌

2

subject to 𝝋,𝝋 𝜌
2 = 𝟏

ℒ𝝋 𝒙 = න
𝒢

𝛿 𝒙, 𝒖 ⨂𝛿 𝒚, 𝒖 𝝋 𝒚 𝑑𝒚 = 𝜆𝝋 𝒙



Design-space dimensionality reduction – Discretization

▪ Considering the variational problem solution

▪ Define a 3-D (cartesian) basis of orthogonal unit vector 𝒆𝑞 𝑞=1

3
is 

possible to write

▪ which yields

▪ Discretizing the variable of integration 𝒚 (therefore the geometry) 
with 𝐿 elements of dimension ∆𝒢𝑗 and centroid at 𝒙𝑗 , 𝑗 = 1,… , 𝐿
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ℒ𝝋 𝒙 = න
𝒢

𝛿 𝒙, 𝒖 ⨂𝛿 𝒚, 𝒖 𝝋 𝒚 𝑑𝒚 = 𝜆𝝋 𝒙

𝜹 𝒙, 𝒖 = ෍

𝑞=1

3

𝛿𝑞 𝒙, 𝒖 𝒆𝑞 , 𝝋 𝒙 = ෍

𝑞=1

3

𝜑𝑞 𝒙 𝒆𝑞

෍

𝑞=1

3

න
𝒢

𝛿𝑝 𝒙, 𝒖 𝛿𝑞 𝒚, 𝒖 𝜑𝑞 𝒚 𝑑𝒚 = 𝜆𝝋𝑝 𝒙

෍

𝑞=1

3

෍

𝑗=1

𝐿

𝛿𝑝 𝒙𝑖 , 𝒖 𝛿𝑞 𝒙𝑗 , 𝒖 𝜑𝑞 𝒙𝑗 ∆𝒢𝑗 = 𝜆𝜑𝑝 𝒙𝑖



Design-space dimensionality reduction – Implementation

▪ This form can be discretized as
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෍

𝑞=1

3

෍

𝑗=1

𝐿

𝛿𝑝 𝒙𝑖 , 𝒖 𝛿𝑞 𝒙𝑗 , 𝒖 𝜑𝑞 𝒙𝑗 ∆𝒢𝑗 = 𝜆𝜑𝑝 𝒙𝑖

𝐝𝑝 𝐮 =

𝛾𝑝(𝒙1, 𝒖𝑘)

⋮
𝛾𝑝(𝒙𝐿, 𝒖𝑘)

−
1

𝑆
෍

𝑘=1

𝑆 𝛾𝑝(𝒙1, 𝒖𝑘)

⋮
𝛾𝑝(𝒙𝐿, 𝒖𝑘)

𝐳𝑝

𝛾𝑝 = 𝜸 ⋅ 𝒆𝑝

𝑫𝑝 = 𝐝𝒑 𝐮𝟏 … 𝐝𝒑 𝐮𝑺

𝑹𝑝𝑞 =
1

𝑆
𝑫𝑝𝑫𝑞

𝑇

𝑾 = ∆𝒢𝑖𝛿𝑖𝑗

Kronecker delta

𝐳𝑞

Covariance matrix

S shape modifications



Design-space dimensionality reduction – Implementation

▪ This form can be discretized as
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෍

𝑞=1

3

෍

𝑗=1

𝐿

𝛿𝑝 𝒙𝑖 , 𝒖 𝛿𝑞 𝒙𝑗 , 𝒖 𝜑𝑞 𝒙𝑗 ∆𝒢𝑗 = 𝜆𝜑𝑝 𝒙𝑖

𝐝𝑝 𝐮 =

𝛾𝑝(𝒙1, 𝒖𝑘)

⋮
𝛾𝑝(𝒙𝐿, 𝒖𝑘)

−
1

𝑆
෍

𝑘=1

𝑆 𝛾𝑝(𝒙1, 𝒖𝑘)

⋮
𝛾𝑝(𝒙𝐿, 𝒖𝑘)

𝐳𝑝

𝛾𝑝 = 𝜸 ⋅ 𝒆𝑝

𝑫𝑝 = 𝐝𝒑 𝐮𝟏 … 𝐝𝒑 𝐮𝑺

𝑹𝑝𝑞 =
1

𝑆
𝑫𝑝𝑫𝑞

𝑇

𝑾 = ∆𝒢𝑖𝛿𝑖𝑗

𝐳𝑞

෍

𝑞=1

3

෍

𝑗=1

𝐿

𝑹𝑝𝑞𝑊 𝑖𝑗
𝒛𝑞 𝑗

= 𝜆 𝒛𝑝 𝑖

Covariance matrix

𝐀𝒊𝒋



Design-space dimensionality reduction – Implementation

▪ This form can be discretized as
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෍

𝑞=1

3

෍

𝑗=1

𝐿

𝛿𝑝 𝒙𝑖 , 𝒖 𝛿𝑞 𝒙𝑗 , 𝒖 𝜑𝑞 𝒙𝑗 ∆𝒢𝑗 = 𝜆𝜑𝑝 𝒙𝑖

𝐝𝑝 𝐮 =

𝛾𝑝(𝒙1, 𝒖𝑘)

⋮
𝛾𝑝(𝒙𝐿, 𝒖𝑘)

−
1

𝑆
෍

𝑘=1

𝑆 𝛾𝑝(𝒙1, 𝒖𝑘)

⋮
𝛾𝑝(𝒙𝐿, 𝒖𝑘)

𝐳𝑝

𝛾𝑝 = 𝜸 ⋅ 𝒆𝑝

𝑫𝑝 = 𝐝𝒑 𝐮𝟏 … 𝐝𝒑 𝐮𝑺

𝑹𝑝𝑞 =
1

𝑆
𝑫𝑝𝑫𝑞

𝑇

𝑾 = ∆𝒢𝑖𝛿𝑖𝑗

𝐳𝑞

𝐀𝐳 = 𝜆𝐳

Covariance matrix



෡𝜹 𝒙, 𝒖 = ෍

𝑘=1

𝑁

𝛼𝑘(𝒖)𝝋𝑘(𝒙)

Design-space dimensionality reduction – “How to use”

▪ Property: each eigenvalue (KL value) equal the variance retained by 
the associated eigenfunction (KL mode)

▪ Dimensionality reduction with confidence level l
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variance retained by each KLE eigenfunction total variance

New representation of the 
shape modification (new 

design space, ROM)

N is the new (reduced) 
dimensionality of the 

design space

New design variables

𝜆𝑘 = 𝛼𝑘
2

𝜎2 = ෍

𝑘=1

∞

𝜆𝑘

෍

𝑘=1

𝑁

𝜆𝑘 ≥ 𝑙෍

𝑘=1

∞

𝜆𝑘 = 𝑙𝜎2



෡𝜹 𝒙, 𝒖 = ෍

𝑘=1

𝑁

𝛼𝑘(𝒖)𝝋𝑘(𝒙)

Design-space dimensionality reduction – “How to use”

▪ Property: each eigenvalue (KL value) equal the variance retained by 
the associated eigenfunction (KL mode)

▪ Dimensionality reduction with confidence level l
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variance retained by each KLE eigenfunction total variance

New representation of the 
shape modification (new 

design space, ROM)

N is the new (reduced) 
dimensionality of the 

design space

𝜆𝑘 = 𝛼𝑘
2

𝜎2 = ෍

𝑘=1

∞

𝜆𝑘

෍

𝑘=1

𝑁

𝜆𝑘 ≥ 𝑙෍

𝑘=1

∞

𝜆𝑘 = 𝑙𝜎2

The use of orthonormal
basis allows for sensitivity
analysis of not correlated

variables



෡𝜹 𝒙, 𝒖 = ෍

𝑘=1

𝑁

𝛼𝑘(𝒖)𝝋𝑘(𝒙)

Design-space dimensionality reduction – “How to use”

▪ Property: each eigenvalue (KL value) equal the variance retained by 
the associated eigenfunction (KL mode)

▪ Dimensionality reduction with confidence level l

03/10/2017CAESES European Users' Meeting 201716

variance retained by each KLE eigenfunction total variance

New representation of the 
shape modification (new 

design space, ROM)

N is the new (reduced) 
dimensionality of the 

design space

𝜆𝑘 = 𝛼𝑘
2

𝜎2 = ෍

𝑘=1

∞

𝜆𝑘

෍

𝑘=1

𝑁

𝜆𝑘 ≥ 𝑙෍

𝑘=1

∞

𝜆𝑘 = 𝑙𝜎2

All the geometric
constraints are 

respected



Before optimization – Reference geometry modifications  

▪ Reference geometry variations
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Fixe
d

27 Parameters
• ±15% Range variation

• Definition of the geometric
constraints (to avoid

infeasible geometries!)

CAESES© Sobol engine
• 12000 geometry

variations



▪ Results
➢ The eigenvalues are 

convergent with respect
to the number of 
designs,

➢ 4 modes are sufficient
for retaining more than
95% of the original
variance,

➢ From 27 to 4 variables, 
more than 85% 
dimensionality
reduction.
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Design-space dimensionality reduction by KLE - variables



Design-space dimensionality reduction by KLE - modes

▪ First four KL modes
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Design-space dimensionality reduction by KLE - modes

▪ First four KL modes

03/10/2017CAESES European Users' Meeting 201720

1 2

X

Y

Z

3 4





Design-space dimensionality reduction by KLE - modes

▪ First four KL modes
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Design-space dimensionality reduction by KLE - modes

▪ First four KL modes
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Design-space dimensionality reduction by KLE - modes

▪ First four KL modes
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Potential flow solver 

▪ Wave Resistance Program (WARP) 
➢ Fixed body 

➢ Double model linearization

➢ Intel Xeon E5-1620 v2 @3.70GHz

➢ HF steady linear potential flow code

• fine body/surface grids

• 4 minutes wall-clock time

➢ LF steady linear potential flow code 

• coarse body/surface grids

• 1 minute wall-clock time

03/10/2017CAESES European Users' Meeting 201724

Bassanini et al., The Wave Resistance Problem in a Boundary Integral Formulation, Surveys on 
Mathematics for Industry, 4:151-194, 1994. 

Grid G1 G2

Upstream extension 1.5 LOA

Downstream extension 3.5 LOA

Sideways extension 1.5 LOA

Body panels 5.2 k 2.6 k

Surface panels 6.0 k 3.0 k



Potential flow solver 

▪ Sensitivity analysis
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𝛼1 = −1,1
𝛼2 = 0
𝛼3 = 0
𝛼4 = 0

𝛼1 = 0

𝛼2 = −1,1
𝛼3 = 0
𝛼4 = 0

𝛼1 = 0
𝛼2 = 0

𝛼3 = −1,1
𝛼4 = 0

𝛼1 = 0
𝛼2 = 0
𝛼3 = 0

𝛼4 = −1,1



Adaptive multi-fidelity metamodel (AMFM) 

▪ AMFM
➢ The adaptive sampling procedure is based on 

metamodel uncertainty minimization. 
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AMFM block diagram

Pellegrini R., Iemma U., Leotardi C., Campana E.F., Diez M., “Multi-fidelity adaptive global metamodel of expensive computer simulations”, in 
Proceedings of IEEE World congress on computational intelligence (WCCI) 24-29 July 2016, Vancouver, Canada.



Adaptive multi-fidelity metamodel (AMFM) - Results 

▪ AMFM uncertainty convergence
➢ The sensitivity analysis is also the training set (17 HF and LF simulations) 

➢ Available budget of 100 iterations
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Fidelity
Number of 
simulations

H 17+10

L 17+100

117 LF 
simulations

About 3 
samples per 

direction

5.6

9.1



Multi-objective deterministic particle swarm optimization

▪ MODPSO
➢ Meta-heuristic algorithm based on the metaphor of a flock of bird or bees searching for food [2]

➢ Personal attractor: minimum of the aggregated function

➢ Global attractor: closest point of social solution set

➢ Hammersley sequence sampling initialization over domain and boundaries, with non-null velocity

➢ 8NdvNof particles
➢ 𝜒=0.721
➢ 𝑐1= 𝑐2 =1.655
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R. Pellegrini, A. Serani, C. Leotardi, U. Iemma, E.F. Campana, M. Diez, “Formulation and parameter selection in multi-objective deterministic 
particle swarm for simulation-based optimization”, Applied Soft Computing 58 (2017) 714-731. pp. 1942–1948.

1

1 , 2 ,

1 1

[ ( ) ( )]k k k k

i i i pb i i gb i

k k k

i i i

v v c x x c x x

x x v



 

     


 

k is iteration counter
i is the particle index
v is the particle velocity
x is the particle position



Simulation-based hull-form optimization
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ΔRT% Δ %

Design ΔLOA% ΔSW% ΔAWP% AMFM WARP AMFM WARP

A 20.55 19.60 -5.65 -28.30 -24.30 22.70 22.80

B 22.19 24.33 1.27 -19.20 -19.20 28.10 28.20

C 21.64 20.10 -11.42 -26.70 -25.70 25.20 25.10



▪ Non-dominated solution set and most promising configurations performances
✓ The optimization is pèrformed with a deterministic formulation of multi-objective particle swarm

optimization algorithm
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Optimized hull-form
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Optimized hull-form

Lower pressure gradients on hull
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Optimized hull-form

Lower pressure gradients on hull

Reduced diverging Kelvin wave



Conclusions
▪ The hull-form optimization of a SWATH model, addressing

the total resistance reduction (at 18 kn) and the 
displacement maximization, has been presented

➢ The parametric CAD models has been produced with CAESES©

software

➢ The geometric variations have been produced with the CAESES
© Sobol engine

➢ The design-space has been reduced with the KLE method

➢ The stochastic radial basis functions based multi-fidelity 
metamodel has been used to predict the model performances

➢ The optimization has been performed with a deterministic
formulation of multi-objective particle swarm optimization
algorithm

▪ The design variables has been reduced from 27 to 4 (85% of 
reduction), retaining more than 95% of the original variance

▪ The AMFM maximum uncertainty has been reduced to 9.1% 
and 5.6% of the original function range for the total
resistance and displacement, respectively

▪ 27 high- and 117 low-fidelity evaluations have been
performed

▪ The optimal design achieves a reduction of the total
resistance about 25% and an increase of the displacement
about 25%
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Ongoing/Future work

▪ Non-linear KLE [1]
➢ E.g. deep auto-encoder  

▪ Inclusion of physical parameters in KLE

➢ The variational analysis takes into account also the 
physical effects of the geometry modification

▪ Use of high-fidelity CFD codes [2]

➢ Xnavis, developed at CNR-INSEAN

▪ Use of hybrid global/local algorithms

➢ Combination of MODPSO and linesearch-type
algorithms

▪ Development of parallel strategies for the 
AMFM update

➢ Take advantage of HPC cluster
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[1]D’Agostino D., Serani A., Campana E.F., and Diez M. “Nonlinear Methods for Design-Space Dimensionality Reduction in Shape Optimization ”, In 
proceedings of 3rd International conference on Machine learning, Optimization and Big Data (MOD 2017) 14-17 September, Volterra, Italy, 2017. 
[2]Pellegrini R., Serani A., Broglia R., Harries S., and Diez M., “Payload Optimization of a Sea Vehicle by Multi-Fidelity Surrogate Models”, In 
preparation for 2018 AIAA SciTech Forum, 8–12 January 2018, Gaylord Palms, Kissimmee, Florida.
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Thank you!

Questions ??
Suggestions ?!?!?!


