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> Objective: multi-objective optimization problem
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CNR-INSEAN: Marine Technology Research Institute, Italy

CNR-INSEAN: Numerical / Experimental research
on naval hydrodynamics and marine engineering;
145 people (65 researchers, research engineers
and temporary positions); All in-house: simulation
codes & hardware (design, production, testing).

* Numerical modeling and simulations for hydrodynamics of
hull, propeller, wave breaking,sloshing, hydroacoustics,
structures

* Simulation-based design methods including validation
experiments

Speed 4x

Delft Catamaran L = 100m
Sea state 5
Fr=0.425
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* Towing tanks

* Circulating water channel

* Cavitation tunnel

* Maneuvering basin (Nemi Lake)

* Hydraulic channel

* Sloshing lab

* High-speed ditching

* Mechanical, electronic,
equipment workshops

* Woodshop
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Simulation-based design optimization
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Multi-objective optimization problem

" The optimization addresses

> total resistance (R;) minimization (18 kn)
> payload maximization (V)

Dimension Value [m]

Loa 36.50
D 4.50
Dy 20.00
L, 6.00
S, 12.00 No constraints
T 6.31 this pr(.ellm.mary
application
Sw 1064 [m?]
Awp 38.88 [m?]
Objective Value
functions
\Y 982.23 [m3]

Ry (HF, 18 kn) 4.816E5 [N]

Pellegrini R., Serani A., Harries S., and Diez M. “Multi-objective hull-form optimization of a SWATH configuration via design-space dimensionality
reduction, multi-fidelity metamodels, and swarm intelligence” In proceedings of 7t International conference on Computational Methods in

Marine Engineering (MARINE 2017), 15-17 May 2017, Nantes, France. SES C Marine Technology Research hsttute
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Approach - INSEAN SBDO Framework
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Marine Technology Research Institute
6 CAESES European Users' Meeting 2017 03/10/2017 = CRESES C‘rl g —— % —§ 5



Design-space dimensionality reduction - Underlying idea
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= Before going through the optimization process, one does not know (yet) where
the optimal design is

= The optimum is unknown and its identification may be considered as a problem
affected by epistemic uncertainty (Diez et al., CMAME, 2015)

= One may consider the (uncertain) design variable vector u as belonging to a
stochastic domain U with associated probability density function f (u), u € U

Diez, M., Campana, E. F., & Stern, F. (2015). Design-space dimensionality reduction in shape optimization by Karhunen—Loéve expansion.
Computer Methods in Applied Mechanics and Engineering, 283, 1525-1544.
Marine Technology Research Institute
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Design-space dimensionality reduction - Definitions

u design variable (uncertain)
X spatial variable

(-) ensamble average over u
8=25—(5)

p(x) weight function

CAESES European Users' Meeting 2017

= Generalized inner product

(f,9), =jg p(X)f(x) - g(x)dx

= Mean shape modification
(6) =j d(x,u)f(w)du
Uu

* Geometric variance (key element)
a% = (||6]1%)

- j j p(x)8(x,u) - 8(x, w)f (uw)dxdu
u g

Marine Technology Research Institute
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Design-space dimensionality reduction — Problem statement

= Basis of orthonormal functions (KLE) u design variable (uncertain)
oo x spatial variable
d(x,u) = z ar, (W)@ (%) (") ensamble average over u
] 5 =6—(8)
- p(x) weight function

= Geometric variance expressed as
-~ 2
= > Y {wa)(one), = ) (4?) =) ((B.0)))
k=1 j=1 j=1 j=1
= Formulation of a variational problem

max J(9) = ((3,9,)’)

PELS(G)
subjectto (@, )7 =1

= The variational problem solution is

Lo(x) = jg (5(6 WSy, W)e()dy = Ap(x)

Marine Technology Research Institute
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Design-space dimensionality reduction — Discretization

= Considering the variational problem solution

Lo(x) = jg (5C6 WS, W)e(dy = Ap(x)

3
= Define a 3-D (cartesian) basis of orthogonal unit vector {eq}q_l is

possible to write

3 3
o(x,u) = z 5s(x, e, Qp(x) = Z pq(x)e,
= which yields 9=1 =1

3
2 jg (8, (2, w84 (3, W) 9 (V)Y = 290, (x)
q=1

= Discretizing the variable of integration y (therefore the geometry)

with L elements of dimension AG; and centroid at xj,j=1,..,L
3

L
Z 2(5?9 (%1, W84 (%7, w))pq (%) AG; = A9 (x)
j=1

q=1
:HE S E S C Marine Technology Research Institute
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Design-space dimensionality reduction — Implementation

= This form can be discretized as 7,
3 L T
z Z(% (x5, u) 8¢ (%7, u) )q (%, )AG; = A, (x)
q=1j=1
yp (xlruk)\ 1 ) yp(xlruk)
d,(u) = L 52 s z,
yp(xL'uk)) k=1 yp(eruk)
Yo =V €y
Dp — [dp(ul) dp(us):
1 S shape modifications
qu = E Dng Covariance matrix
W = [AG;6;]

Kronecker delta

Marine Technology Research Institute
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Design-space dimensionality reduction — Implementation

= This form can be discretized as 7,
!

z Z<5p (x5, u)64 (%7, 1) Joq (%;)AG; = A (x)
q=1j=1 :
v |
yp(xlruk)\ 1 ) yp(xlruk) :

=] (-c>1 7
Vo (xL» uk)J k=1 \Vp (er uk) :
|
Yp =V €p :
|
|
Dp = [dp(ul) dp(us)] :
:
R,, = 1D DT Covariance matrix I
pq S p—q l
3 L
=[2G, > Z pqw1 zq}, =1z},
q: :
A

ij
Marine Technology Research Institute
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Design-space dimensionality reduction — Implementation

= This form can be discretized as 7,
3 L T
z Z<5p (xi, w)8q (1, u))Pq (%;)AG; = Ay (x)
q=1j=1 I
v |
yp(xlruk)\ 1 ) yp(xlruk) :
=4 -1 7,
Vo (xL» uk)J k=1 \Vp (er uk) :
|
Yo =V €p :
|
|
Dp = [dp(ul) dp(us)] :
|
1o o1 . . :
qu = EDqu Covariance matrix l
Az = Az
W = [AG;5;;]

Marine Technology Research Institute
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Design-space dimensionality reduction — “How to use”

= Property: each eigenvalue (KL value) equal the variance retained by
the associated eigenfunction (KL mode)

L = () 62 = Z Iy
=

total variance

* Dimensionality reduction with confidence level |

New representation of the
6(X>Q z “kQQ‘Pk(x) shape modification (new

design space, ROM)

New design variables

N © N is the new (reduced)
z A = lz Ay = lo? dimensionality of the
=1 =1 design space

Marine Technology Research Institute
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Design-space dimensionality reduction — “How to use”

= Property: each eigenvalue (KL value) equal the variance retained by
the associated eigenfunction (KL mode)

L = () 62 = Z Iy
=

total variance

* Dimensionality reduction with confidence level |

N
— New representation of the
6(X>Q = z akQQ‘PQ shape modification (new
k=1

design space, ROM)

The use of orthonormal
basis allows for sensitivity
analysis of not correlated

variables

N © N is the new (reduced)
z A = lz Ay = lo? dimensionality of the
=1 =1 design space

Marine Technology Research Institute
15 CAESES European Users' Meeting 2017 03/10/2017 = LRE=sES C‘rl w5



Design-space dimensionality reduction — “How to use”

= Property: each eigenvalue (KL value) equal the variance retained by
the associated eigenfunction (KL mode)

A = (ai?) o2 = Z A
=

total variance

* Dimensionality reduction with confidence level |

N
— New representation of the
6(X>Q = z “kQQ‘Pk(x) shape modification (new
]‘ k=1 design space, ROM)
All the geometric
constraints are
respected

N is the new (reduced)

N 00
z A = lz Ay = lo? dimensionality of the
k=1 k=1

design space

Marine Technology Research Institute
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Before optimization — Reference geometry modifications

= Reference geometry variations

27 Parameters

1+15% Range variation
Definition of the geometric

constraints (to avoid

infeasible geometries!)

CAESES® Sobol engine
12000 geometry
variations

o 4 o

Marine Technology Research Institute
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Design-space dimensionality reduction by KLE - variables

= Results L
> The eigenvalues are o 09
convergent with respect < 08 b l §=6000 -l .
to the number of I I S5HS00 g
. ZH'“" 0—."' (5‘:0_95 Tomrmrmresmes -
designs, 06 I
> 4 modes are sufficient o 3 5 7 9 11
for retaining more than
95% of the original 14001
variance,
1200
> From 27 to 4 variables,
more than 85% 1000 |
dlmen§|onallty o 800 |
reduction. S
< 600 |
400 +
200 |
0

I 3 5 7 9 11

N
Marine Technology Research Institute
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Design-space dimensionality reduction by KLE - modes

= First four KL modes ¢

@, D5 ®,

H%*H#

24 1@113
2 _ZL ‘
B

o® oM

Marine Technology Research hsitute
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Design-space dimensionality reduction by KLE - modes

= First four KL modes ¢

2 @, D5 @,

Marine Technology Research hsitute
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Design-space dimensionality reduction by KLE - modes

= First four KL modes ¢

@, D3

Marine Technology Research hsitute
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Design-space dimensionality reduction by KLE - modes

= First four KL modes ¢

Marine Technology Research hsitute
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Design-space dimensionality reduction by KLE - modes

= First four KL modes ¢

@,

Marine Technology Research hsitute
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Potential flow solver

= Wave Resistance Program (WARP)

>

>
>
>

Fixed body
Double model linearization

Intel Xeon E5-1620v2 @3.70GHz

HF steady linear potential flow code

 fine body/surface grids

* 4 minutes wall-clock time

LF steady linear potential flow code

» coarse body/surface grids
* 1 minute wall-clock time

Grid G1 G2
Upstream extension 1.5 Lpp
Downstream extension 3.5,
Sideways extension 1.5 Ly,
Body panels 5.2k 2.6k
Surface panels 6.0 k 3.0k

24
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Bassanini et al., The Wave Resistance Problem in a Boundary Integral Formulation, Surveys on

Mathematics for Industry, 4:151-194, 1994.
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Potential flow solver

= Sensitivity analysis

V [m]

a; ={-1,1} a; = a; = a; =
a, = 0 a, = {—1,1} a, = 0 a, = 0
a3 = 0 a3 = a3 = {—1,1} a3 = 0
Xy = 0 dy = 0 ay = 0 ay = {_1,1}
Gl—f— ‘GZ_'_. &= Gl—f— ‘G2—*—I & = Gl—f— .Gz_'_. &= Gl—f— ‘G2—*—I &=
0.6 | k=1 0.6 | =2 06 k=3 06} k=4
b\%% \ — * § ﬁ —_——,
Z 0.4 | Z 0.4 | 1 Z 0.4 1 Z 04 |
2, =) 2 2
~ ~ = =
~ 0.2 1 & 02 102 18 0.2
Ol === o 0| | o
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
oy [-] oy [-] oy [-] oy [-]
1500 —— 2 T s 2 T st ——2 = 150 —— £
1200 1200 ¢ 1 1200 1200
.‘_—.—_’.___.____‘ / - X )
9200 15 900 + 15— 900 1.5 900
E E E
600 LS 600 S 600 S 600
300 1 300 1 300 1 300
0= : . . " 0 = : . " i 0= : . . ol 0 r= : . : ;
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
oy [-] oy [-] oy [-] oy [-]
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Adaptive multi-fidelity metamodel (AMFM)

AMFM

> The adaptive sampling procedure is based on
metamodel uncertainty minimization.

Given the initial
training set
X

]

Fori=1,...,n compute

fi;H (x):.ﬂ,l,(x)

AMFM block diagram

3
Fori=1,...,n compute Fori=1,...,n compute Fori=1,...,n compute
gi:.f;,H_.f,;’L é,’:.ﬁ,L -f; :JFJ',L +§i
1 1 |
Fori=1,.., n compute Fori=1,...,n compute Fori=1,...,n compute
* * * _ 2 2
Fin ([, (X) f2(3) U, =JU; +UZ

!

Fori=1,...,n compute

(X*,i*)=argmax[Uﬁ(x)}

X.i

Converged?

End

0.1

0.01}

0.001

(3]

NRMSET = max(Up )/R ~
NRMSE TH <+ max(U yﬂ)/R -

(2 ]

30

50 70 100 150
Computational cost

Pellegrini R., lemma U., Leotardi C., Campana E.F., Diez M., “Multi-fidelity adaptive global metamodel of expensive computer simulations”, in
Proceedings of IEEE World congress on computational intelligence (WCCI) 24-29 July 2016, Vancouver, Canada.

26
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Adaptive multi-fidelity metamodel (AMFM) - Results

= AMFM uncertainty convergence
> The sensitivity analysis is also the training set (17 HF and LF simulations)
> Available budget of 100 iterations

300 . . - . .
R+ — - Number of
200 ?T —_ Fidelity simulations
HF H 17+10
100 1 Penalty -~ | L 17+100
S 50| :
S \
- 20 F A% § 117 LF
7 [\ A simulations
H
) y ol \-»9.1
A LA AAA M AN T 5.6 About 3
oI N NS N R M A . T samples per
0 20 40 60 80 100 direction

AMFM Iteration [-]

Marine Technology Research Institute
27 CAESES European Users' Meeting 2017 03/10/2017 = LR=E=ES C‘rl ¥



Multi-objective deterministic particle swarm optimization

= MODPSO
> Meta-heuristic algorithm based on the metaphor of a flock of bird or bees searching for food [2]
> Personal attractor: minimum of the aggregated function
> Global attractor: closest point of social solution set
> Hammersley sequence sampling initialization over domain and boundaries, with non-null velocity
> 8Ny,N, particles
> x=0.721
¥ ¢q=c, =1.655
Vik+1 = Z[Vik + C1(Xi,pb — Xik) +C, (Xi,gb — Xik)] , 5;® 5,0 ithparticle ®
Xik+1:Xik+Vik+1 2 (5;8\

o \ﬁ—/\

) , Nos
4

_min Z Sk,j
k is iteration counter Jj=1,|8pl

i is the particle index
v is the particle velocity ® SES,

x is the particle position

k=1

R. Pellegrini, A. Serani, C. Leotardi, U. lemma, E.F. Campana, M. Diez, “Formulation and parameter selection in multi-objective deterministic
particle swarm for simulation-based optimization”, Applied Soft Computing 58 (2017) 714-731. pp. 1942-1948.

Marine Technology Research Institute
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Simulation-based hull-form optimization

= Non-dominated solution set and most promising configurations performances

v The optimization is pérformed with a deterministic formulation of multi-objective particle swarm
optimization algorithm

29 T T T T T T T T T 0_7 1 T I I T 1 T I I
Pareto " Original ---
28 A | @) 0.6 + - -
B =
27 g © . 0.5 C .
' i i z I ]
R 26 E, 0.4
D- a1 - L L _
25t L & 03
| / 1 027 - '
23 2 ] 0.1 v .
L . o
29 28 -27 26 -25 -24 -23 22 21 -20 -19 6 8 10 12 14 16 18 20 22 24 26
A Ry [%] Speed [kn]
AR.% &V %
Design  Olg%  AS,%  AAy% EAMFM—E EWARP i AMFM  WARP
A 2055 1960  -5.65 |-2830! |-2430| 2270 2280
]
B 2219 2433 127 | -19.20! 11920 2810 2820
1 1
C 21.64 2010 -1142 |-2670! 125701 2520  25.10

Marine Technology Research Institute
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Optimized hull-form

- .
P [Pa] -12000 -8000 -4000 0 4000 8000 12000 16000 20000
OPTIMIZED (C) ORIGINAL

o«

OPTIMIZED (C)

S ——
I L1l I L1l I Ll I Ll I Ll 1l I Ll I Ll I L1l I Ll I L1l I
25 20 -15 -10 -5 0 5 10 15 20 25

X [m]

ORIGINAL
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Optimized hull-form

P [Pa] -12000 -8000 -4000 0 4000 8000 12000 16000 20000
OPTIMIZED (C) ORIGINAL

Lower pressure gradients on hull

H—x OPTIMIZED (C)

I\\III\\III\\\III\\II\\\II\I\\I\\\\I\\I\I\\\\II\\II
25 20 -15 -10 -5 0 5 10 15 20 25

X [m]

ORIGINAL
Marine Technology Research Institute
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Optimized hull-form

P [Pa] -12000 -8000 -4000 0 4000 8000 12000 16000 20000
OPTIMIZED (C) ORIGINAL

Lower pressure gradients on hull

H—x OPTIMIZED (C)

I\\III\\III\\\III\\II\\\II\I\\I\\\\I\\I\I\\\\II\\II
25 20 -15 -10 -5 0 5 10 15 20 25

X [m]

ORIGINAL
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Reduced diverging Kelvin wave
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Conclusions

33

The hull-form optimization of a SWATH model, addressing
the total resistance reduction (at 18 kn) and the
displacement maximization, has been presented

> The parametric CAD models has been produced with CAESES®
software

> The geometric variations have been produced with the CAESES
© Sobol engine

The design-space has been reduced with the KLE method

The stochastic radial basis functions based multi-fidelity
metamodel has been used to predict the model performances

> The optimization has been performed with a deterministic
formulation of multi-objective particle swarm optimization
algorithm

The design variables has been reduced from 27 to 4 (85% of
reduction), retaining more than 95% of the original variance

The AMFM maximum uncertainty has been reduced t0 9.1% 29 ——
and 5.6% of the original function range for the total 2 Mo AJ
resistance and displacement, respectively o7l A ¢
27 high- and 117 low-fidelity evaluations have been Ei 2 _
performed < B
24 |
The optimal design achieves a reduction of the total 23 | E-If/
resistance about 25% and an increase of the displacement P S
about 25% 229 28 27 -26 -25 -24 23 22 21 -20 -19

ARy [%]

Marine Technology Research Institute
CAESES European Users' Meeting 2017 03/10/2017 = LRE=sES C‘rl w5




Ongoing/Future work

= Non-linear KLE [1] s oupte
> E.g. deep auto-encoder

* [nclusion of physical parameters in KLE

-
> The variational analysis takes into account also the
physical effects of the geometry modification

= Use of high-fidelity CFD codes [2]
> Xnavis, developed at CNR-INSEAN

= Use of hybrid global/local algorithms

» Combination of MODPSO and linesearch-type o <t
a|g0rithms 2 04 A 3
= Development of parallel strategies for the A
AMFM update of /T
> Take advantage of HPC cluster B2 oz os o o ot 05 s o0

[1]D’Agostino D., Serani A., Campana E.F.,, and Diez M. “Nonlinear Methods for Design-Space Dimensionality Reduction in Shape Optimization”, In
proceedings of 3rd International conference on Machine learning, Optimization and Big Data (MOD 2017) 14-17 September, Volterra, Italy, 2017.
[2]Pellegrini R., Serani A., Broglia R., Harries S., and Diez M., “Payload Optimization of a Sea Vehicle by Multi-Fidelity Surrogate Models”, In
preparation for 2018 AIAA SciTech Forum, 8—-12 January 2018, Gaylord Palms, Kissimmee, Florida.
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Thank you!

Questions ??
Suggestions ?1?217]
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