Virtual prototyping of fully appended naval vessels by integrating ANSYS-CFX into the hull form optimization process

September 28, 2017 | Tanja Richardt thyssenkrupp Marine Systems

Hull form optimization process

engineering.tomorrow.together.

Agenda

- Introduction
- Parametric modeling of hull form and appendages
- Integration of ANSYS-CFX in CAESES
- Application
 - Optimization OPV
 - Aft-body parameter variation
 - Interceptor optimization
 - Comparison of different bow shapes
- Conformity to model test results
- Conclusion

Hull form optimization process 1 4 Optimization Optimization Parametric Modeling Numerical towing tank (Potential flow) (RANSE) DECK **Basic curves** 0 Variables Automatic mesh Aft-body variation Generated anoration smooth hull form RT [kN] 13.2 0,15 0.05 0.1 0.2 0.25 Interceptorsize [m] Interceptor optimization Pressure distribution **Constraints** & streamlines Variant Bulb 26 [kn] 1.35e+4 1.3e+0 ANSY 1.25e+0 1.2e+4 1.15e+ Variant Steven 26 [kn] Parameter evaluation Result of multi-Comparison of different bow types objective CFD

Results

thyssenkrupp Marine Systems

3 | 2017 / 09 / 28 | Virtual prototyping of fully appended naval vessels by integrating ANSYS-CFX into the hull form optimization process | Tanja Richardt

optimization

Parametric modeling

Parametric modeling

thyssenkrupp Marine Systems 5 | 2017 / 09 / 28 | Virtual prototyping of fully appended naval vessels by integrating ANSYS-CFX into the hull form optimization process | Tanja Richardt

Appendages

Geometry export

Geometry export

Integration of ANSYS CFX -Exports

Export:

- Solids (Domain)
- Trimesh (Watersurface)
- Surfaces (Brackets)
- Curves (All edge
- Points
- Geometry inform

Integration of ANSYS CFX – Software connector

🗄 🗸 🕒 🔽 SoftwareConnector X 🛅 TableViewer X 🖻 FileVi	⊗ ≡ ∢ ►	4 D	×
Overview opvCase02.rpl X opvCase02.pre X opvCase02.cze X pointTest.txt X Report.txt X opvCase02steady.pre X opvCase02quasi.pre X		FConfigurationGenIn	t
T C Amput Geometry	configCFX	0	+
😢 🚮 cylinder.stl 😢 🛐 points.igs			
S igs edgeCyl.igs S ist solids.st	General		
😢 igs edgesApp.igs 😢 igs surfBossing.igs	configCFX		
😮 📷 edgesDeck.igs 😢 📷 surfBrackets.igs 🔇 🕡 opvCasel	2	"C:/Projekte/Artikel/2016Artikel/des4f_421/manua	
😮 igs edgesDomain.igs 😢 igs surfFin.igs 😢 🕡 opvCasel	geometry_path	getDesignDir() + "/computeCFX"	
😒 igs edgesHull.igs 😒 igs surfHub.igs 🔇 🕠 opvCasel	12	2339.78818085	
😮 igs edgesLeading.igs 😵 igs surfRudder.igs 📈 🔇 🕞 opvCasel	displ 12	hydrostatic hydroResults IVOL	
😮 igs edgeSym.igs 😢 igs surfShaft.igs 🔇 🗔 opvCasel	12	42.44486187	
😢 📷 edgeWater.igs 😢 💷 water.sti	gx	hydrostatic hydroResults XCB	
		4.25	+
+ C O Result Files computeCFX	gz	hydrostatic hydrodraft + exportForCFX water dynamicSink	Ê
S out opvCase01_001.out S Report.b	t speed	26	
OpvCase01_3D.png			
OpvCase01_druck.png	777		
OpvCase01_waveHeight.png		water dynamicSink	
	projectName	"project4"	
		96.78772874	7
	TestPointAusFeature	exportForCFX writecurvetocsv:curPoint:x	C.
	1 Sec. 571		
	Time	150	
	maint data	*C:/Projekte/Artikel/2016Artikel/des4f_421/manua	aling: 1
	point_data	getDesignDir() + "/computeCFX/points.txt"	

VAV

Integration of ANSYS CFX – Batch file

- ICEM meshing
- CFX Pre generating Input-Files
- CFX Solver steady and transient calculation
- CFX Post Evaluation of results

```
@echo off
3
   cls
   @echo Start Meshing.....
  CALL "C:\Program Files\ANSYS Inc\v161\icemcfd\win64 amd\bin\icemcfd.bat" -batch -script opvCase02.rpl
8
   Gecho CFX PRE....
   "C:\Program Files\ANSYS Inc\v161\CFX\bin\cfx5pre.exe" -batch opvCase02quasi.pre
   @echo CFX PRE....
   "C:\Program Files\ANSYS Inc\v161\CFX\bin\cfx5pre.exe" -batch opvCase02steady.pre
14
   Gecho CFX SOLVE ...
   "C:\Program Files\ANSYS Inc\v161\CFX\bin\cfx5solve.exe" -batch -parallel -partition 4 -par-local -def "opvCase02steady.def" -fullname opvCase02steady 001
16
   Gecho CFX SOLVE ...
18
   "C:\Program Files\ANSYS Inc\v161\CFX\bin\cfx5solve.exe" -batch -parallel -partition 4 -par-local -def "opvCase02.def" -initial opvCase02steady_001.res -fullname
19
  Gecho CFX POST ...
   "C:\Program Files\ANSYS Inc\v161\CFX\bin\cfx5post.exe" -batch opvCase02.cse"
```


Integration of ANSYS CFX – Mesh generation by

Integration of ANSYS CFX – CFX POST

Hull form optimization – OPV (LoA = 91.2 m)

Displacement = 2400 t, v = 20 kn, 26kn

Displacement = 2200 t, v = 28 kn

-	1.00	2014		1.2.10		1.20
De	•SIG		va	ria	DI	es
						1000

	Design Variable		Lower	Value	Upper	Activ	e				
1	v_SacTanAtFwdBase		110	128	150	×	8			7 7 7	A
2	v_SacCoeffAtFwdBase		0.1	0.13	0.15	×	0				
3	v_maxBeamAtBulbAft		4	4.5	5.2	×					
4	v_SacCoeffAtFosEmerge	*	0.97	0.98	0.983	×			Marchard and a		18.32
5	v_flareDwlMax	*	24	34	38	×	Name	State	Monitored Value	Comparator	Limit
6	v_flareDwlRelXMax	*	0.5	0.675	0.7	×	minDwlBeam		13.45695822	">"	13.2
7	v_dwlAddAreaCoeff		-0.01	-0.01	0.006	×	minKMT		7.75408888	">"	7.5
8	v_dwlAddXCA		-0.0005	0	0	×		-			
9	v_SacDeltaAreaCoeff	•	-0.01	-0.006	0	×	minWeight		2406.40005793	">"	2400
10	weightAtMainFrame		0.84	0.75	0.96	×	minXCA		42.19137394	">"	42
11	v_maxBeamAddAreaCoeff	*	-0.06	0	0	×	v	_			
12	v_halfBeamBulb_diff	*	0	0.2	0.2	×	8				
13	v_maxBeamElevation_diff	*	0	-0.25	0.1	×	8				
14	dv_tipElevation	-	1.8	1.8828125	2	×	8				
15								_			

Evaluation of designs

Interceptor optimization

Comparison of different bow types

at two differnt load cases

Velocity: 20 kn & 26 kn (Froude 0.34 & 0.26)

Comparison of calculated values and model test results

Next step

Conclusions

- Wide range of hull form variation in a short time frame
- Optimized hull form for different speeds and loads by fulfilling demanding requirements
- Maximum speed within the given cost and engine power and economic use at the operational profile
- Consideration of influence of aftbody variations, appendages and floating position caused by interecptor
- Reliable results in early design
- Minimized risk during the proposal stage
- \rightarrow We can offer optimized hull shapes operating with minimum engine power at maximum speeds within a short time frame.

