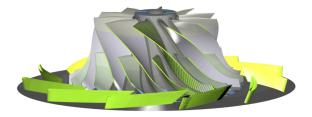
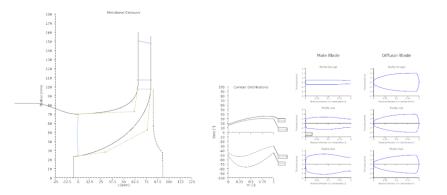
# Design-space reduction with super parameters for faster optimization

Hedi Böttcher, Carsten Fütterer, Stefan Harries

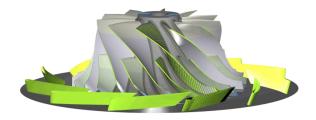

**CAESES Users Meeting 2019 – Berlin, September 20th, 2019** 


Advanced Turbomachinery Design (GAMMA)



#### Contents

- Motivation for parameter reduction
- Karhunen-Loève Expansion (KLE) for design space reduction
  - Idea
  - Simple examples
  - Process
- Massive parameter reduction in compressor optimization
- Conclusions






# Motivation for massive parameter reduction

Problem:

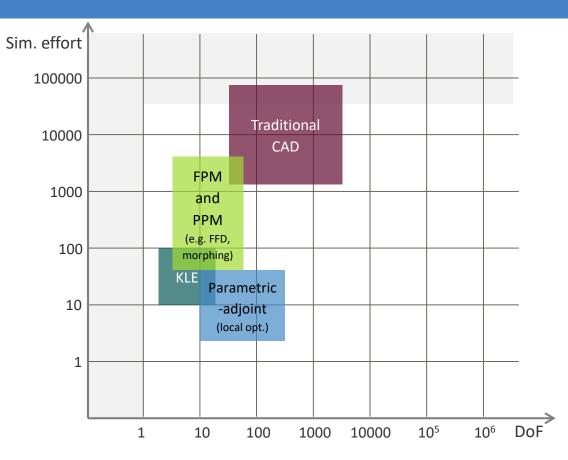
- Optimization of parametric models with many free design variables requires many simulations
- Number of designs required ~ (number of free variables)<sup>2</sup>
- Aim:
  - Reduction of the number of free variables
    - $\rightarrow$  Reduce the design space further
    - → Substantial speed-up in simulation-driven design (SDD)
- Application:
  - Design task with many free variables
  - Design tasks with long (resource-intensive) simulations



#### Major issue

37.5 50 62.5 75 87.5 100 112 129

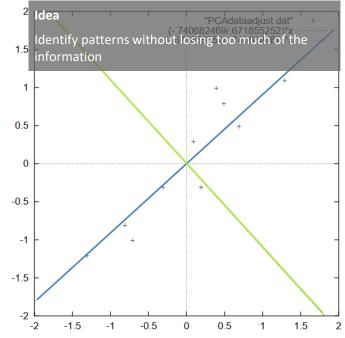
In order to understand design spaces a high number of variants needs to be studied  $\rightarrow$  estimate being the square of a system's degree-of-freedom


#### FRIENDSHIP SYSTEMS © 2019



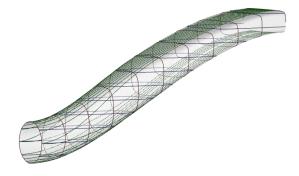
170 160

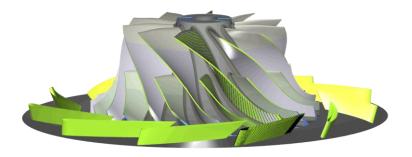
150 140 130


# **Motivation**

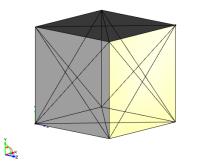


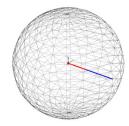
# **Design-space reduction by Karhunen-Loève Expansion (KLE)**


# **Karhunen-Loève Expansion (KLE)**


- Principle components analysis
  - A large number of statistical variables are being replaced by an approximation with a reduced number of linear combinations of orthogonal basis functions
  - Modes relate to "super parameters"
  - Decorrelation of data (as far as possible)
- Benefits
  - Check quality of a parametric model
  - If needed and possible reduce number of free variables (further)
- Aim
  - Finding an optimal basis of orthonormal functions
  - Optimality condition refers to the geometric variance retained by the new basis functions




Source: Lindsay I. Smith (2002) A Tutorial on Principal Components Analysis









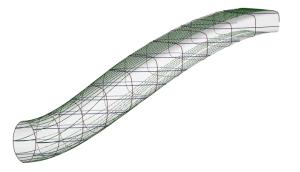




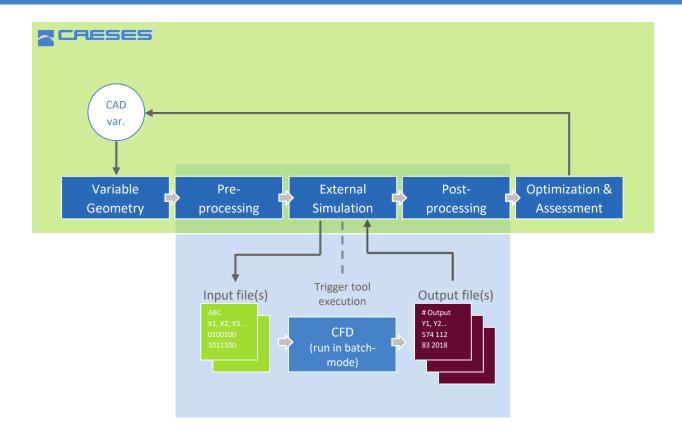

FRIENDSHIP SYSTEMS © 2019

# Variability reached by super parameters

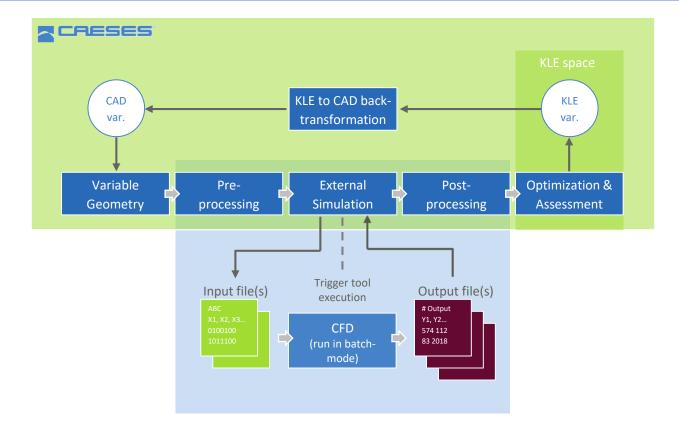
|                                                                                                                                                                                            |     | Modified<br>sphere | Cuboid  | HVAC<br>duct                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------|---------|------------------------------------------------------------|
| Number of free variables of the<br>original CAD model (DoF)                                                                                                                                |     | 2*                 | 3       | 14                                                         |
| Number of Sobol variants used for KLE                                                                                                                                                      | 100 | 100                | 1000**  |                                                            |
| Variability reached with 1 <sup>st</sup> super parameter                                                                                                                                   | 1   | 100.0 %            | 35.83 % | 83.84 %                                                    |
| Variability reached with<br>1 <sup>st</sup> and 2 <sup>st</sup> super parameters                                                                                                           | 2   | _                  | 69.28 % | Cuboid                                                     |
| Variability reached with the first<br>three super parameters<br>Variability reached with the first<br>four super parameters<br>Variability reached with the first<br>five super parameters |     | _                  | 100.0 % | All CAD variables are completely independent $\Rightarrow$ |
|                                                                                                                                                                                            |     | _                  | -       | KLE does not give any benefit                              |
|                                                                                                                                                                                            |     | _                  | -       | 98.51 %                                                    |
| Variability reached with the first 10 super parameters                                                                                                                                     | 10  | _                  | -       | 99.72 %                                                    |
| Number of super parameters needed to reach more than 95 % variability                                                                                                                      |     |                    |         | 3                                                          |
| Number of super parameters needed to reach more than 99 % variability                                                                                                                      |     |                    |         |                                                            |
| Ratio of number of free variables of<br>the original CAD model and number<br>of KLE variables needed to reach<br>95 % variability <i>[square]</i>                                          |     |                    |         | 67<br>1.8]                                                 |
|                                                                                                                                                                                            | ě   | ×z                 | 8       | FRIENDSHIP SY                                              |


FRIENDSHIP SYSTEMS © 2019

# Variability reached by super parameters


|                                                                                                                                            |    | Modified<br>sphere | Cuboid                |               |                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------|-----------------------|---------------|--------------------------------------|
| Number of free variables of the<br>original CAD model (DoF)                                                                                |    | 2*                 | 3                     |               |                                      |
| Number of Sobol variants used for<br>KLE                                                                                                   |    | 100                | 100                   |               |                                      |
| Variability reached with 1 <sup>st</sup> super parameter                                                                                   | 1  | 100.0 %            | 35.<br>Modi           | fied sphere   | with $x_1 + x_2 = r$                 |
| Variability reached with 1 <sup>st</sup> and 2 <sup>st</sup> super parameters                                                              | 2  | -                  | <sup>69.1</sup> CAD v | variables are | e completely redundant $\Rightarrow$ |
| Variability reached with the first three super parameters                                                                                  | 3  | -                  | 100 KLE di            | agnoses de    | ependencies                          |
| Variability reached with the first four super parameters                                                                                   | 4  | -                  | —                     |               |                                      |
| Variability reached with the first five super parameters                                                                                   | 5  | -                  | —                     |               |                                      |
| Variability reached with the first 10 super parameters                                                                                     | 10 | -                  | —                     |               |                                      |
| Number of super parameters needed to reach more than 95 % variability                                                                      |    | 1                  | 3                     |               |                                      |
| Number of super parameters needed to reach more than 99 % variability                                                                      |    | 1                  | 3                     |               |                                      |
| Ratio of number of free variables of<br>the original CAD model and number<br>of KLE variables needed to reach<br>95 % variability [square] |    | 2<br>[4]           | 1<br>[1]              |               |                                      |

# Variability reached by super parameters


|                                                                                                                                                   |    | Modified<br>sphere | HVAC<br>duct   |        |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------|----------------|--------|
| Number of free variables of the<br>original CAD model (DoF)                                                                                       | •  | 2*                 | 14             | -      |
| Number of Sobol variants used for<br>KLE                                                                                                          |    | 100                | 1000**         | -      |
| Variability reached with<br>1 <sup>st</sup> super parameter                                                                                       | 1  | 100.0 %            | 83.84 %        | -      |
| Variability reached with<br>1 <sup>st</sup> and 2 <sup>st</sup> super parameters                                                                  | 2  | _                  | 92.05 %        | -      |
| Variability reached with the first three super parameters                                                                                         | 3  | _                  | 95.76 %        |        |
| Variability reached with the first<br>four super parameters                                                                                       | 4  | —                  | 97.44 %        | -      |
| Variability reached with the first<br>five super parameters                                                                                       | 5  | _                  | 98.51 %        | -      |
| Variability reached with the first 10 super parameters                                                                                            | 10 | —                  | 99.72 %        | Z      |
| Number of super parameters needed to reach more than 95 % variability                                                                             |    | 1                  | 3              | v llex |
| Number of super parameters needed to reach more than 99 % variability                                                                             |    | 1                  | 7              |        |
| Ratio of number of free variables of<br>the original CAD model and number<br>of KLE variables needed to reach<br>95 % variability <i>[square]</i> |    | 2<br>[4]           | 4.67<br>[21.8] | Ţ.     |

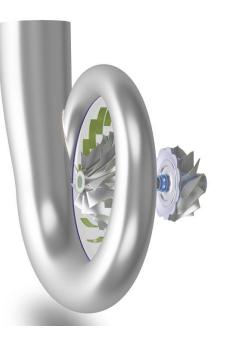


## **Standard process**

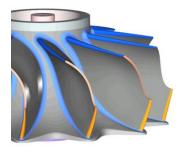


#### **Process with KLE**

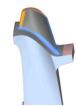



# **KLE for compressor optimization**

# **Parametric Model of a Turbocharger**




#### Volute Compressor






#### Radial turbine



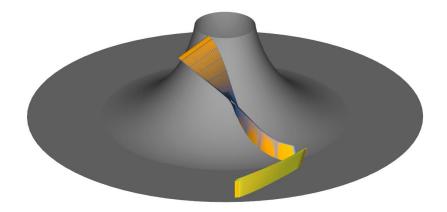
#### Axial turbine



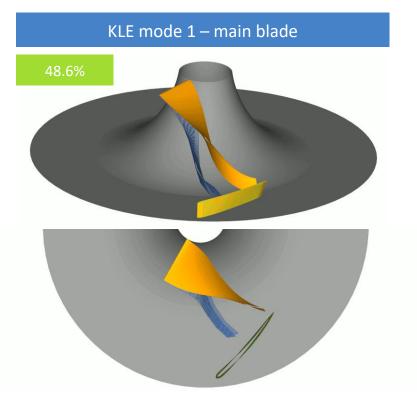
FRIENDSHIP SYSTEMS © 2019

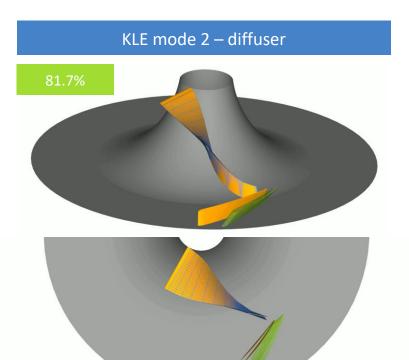
## **Compressor Component – Impeller and Diffuser**

- Geometry created in CAESES:
  - D\_Out: 195mm
  - No splitter blades
  - 11 impeller blades
  - 19 diffuser blades
  - 16 design variables for the main blade
  - 10 design variables for the diffuser vane

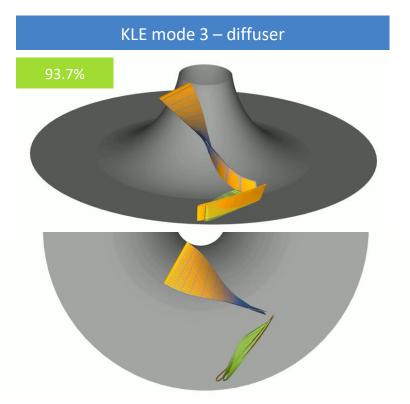

- Target:
  - Increase efficiency
- Constraint:
  - Pressure ratio > 2.1
  - Convergence

| IE |  |
|----|--|
| e  |  |
|    |  |
|    |  |

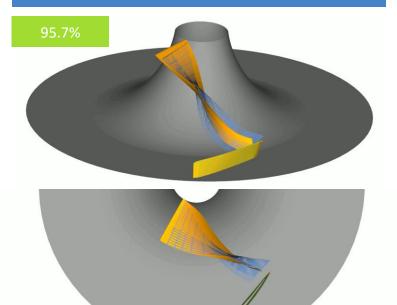

|    | Design Variable            |   | Lower | Value | Upper |
|----|----------------------------|---|-------|-------|-------|
| 1  | ANGLE_HUB                  | • | -10   | 0     | 10    |
| 2  | ANGLE_SHROUD               | • | -10   | 0     | 10    |
| 3  | MID_SHIFT_DELTA            | • | -2    | 0     | 2     |
| 4  | MID_SHIFT_POS              | • | 0.3   | 0.5   | 0.8   |
| 5  | BETA_HUB_LE                | • | 40    | 45    | 50    |
| 6  | BETA_HUB_TE                | • | 45    | 50    | 55    |
| 7  | BETA_SHROUD_LE             | • | 25    | 30    | 35    |
| 8  | BETA_SHROUD_TE             | • | 40    | 41.7  | 50    |
| 9  | BETA_TanFactor_HUB_LE      | • | 0.4   | 0.5   | 0.6   |
| 10 | BETA_TanFactor_HUB_TE      | • | 0.4   | 0.5   | 0.6   |
| 11 | BETA_Tan_HUB_LE            | • | -45   | -45   | -35   |
| 12 | BETA_Tan_HUB_TE            | • | -65   | -60   | -55   |
| 13 | BETA_TAN_SHROUD_LE         | • | -15   | -10   | -5    |
| 14 | BETA_TAN_SHROUD_TE         | • | -40   | -35   | -30   |
| 15 | THETA_DELTA_SHROUD_LE      | • | -10   | -2    | 0     |
| 16 | THETA_DELTA_SHROUD_TE      | • | -10   | 0     | 10    |
| 17 | Diff_BETA_HUB_LE           | • | 17    | 19    | 25    |
| 18 | Diff_BETA_HUB_TE           | • | 28    | 37    | 44    |
| 19 | Diff_BETA_SHROUD_LE_Delta  | • | -4.5  | -2    | 3.5   |
| 20 | Diff_BETA_SHROUD_TE_Delta  | • | -5    | -1    | 8     |
| 21 | Diff_BETA_Tan_HUB_LE       | • | -30   | -20   | -10   |
| 22 | Diff_BETA_Tan_HUB_TE       | • | -7.5  | 0     | 10    |
| 23 | Diff_BETA_Tan_SHROUD_LE    | • | -30   | -20   | -10   |
| 24 | Diff_BETA_Tan_SHROUD_TE    | • | -10   | 10    | 20    |
| 25 | DIFF_THETA_DELTA_SHROUD_LE | • | -15   | -3    | 8.5   |
| 26 | DIFF_THETA_DELTA_SHROUD_TE | ÷ | -5    | 0     | 5     |


# **Building a KLE model**

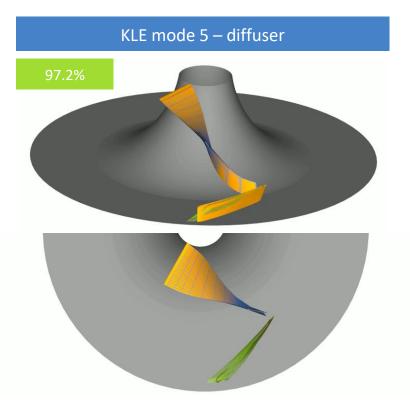
- 1) Build a parametric model (as usual)
- 2) Produce an ensemble of variants (DoE)
  - Same topology, different geometry
- 3) Determine KLE  $\rightarrow$  Generate the KLE model
- 4) Decide how many KLE variables shall be used
- 5) Optimize in KLE space
  - Generate new variant in KLE space
  - Back-transform from KLE space to CAD space and analyze (and repeat)



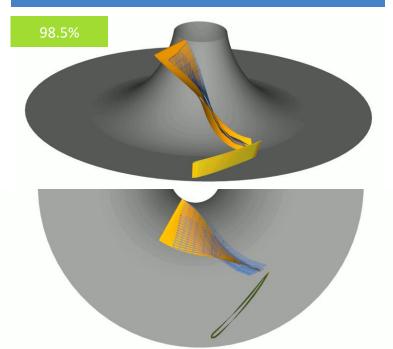

# First and second KLE modes







# Third and fourth KLE modes




#### KLE mode 4 – main blade



# Fifth and sixth KLE modes



#### KLE mode 6 – main blade

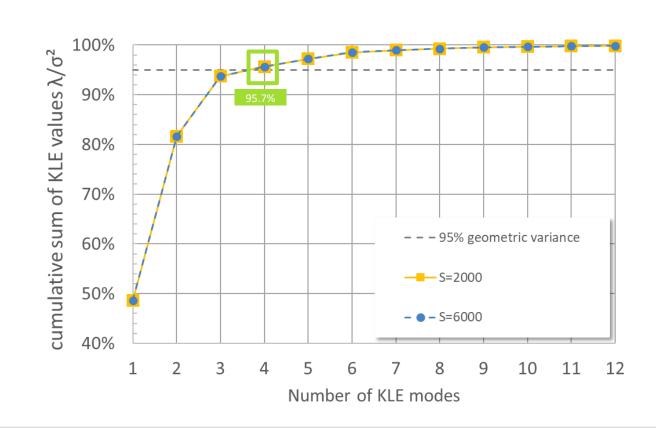


## **Compressor Component – CFD setup**

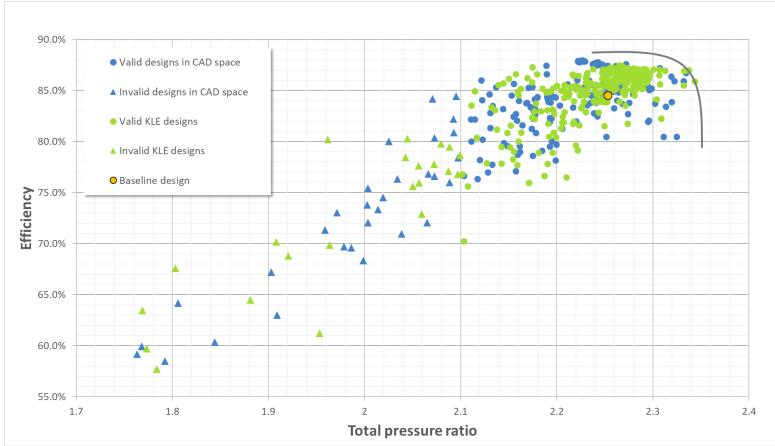
NUMECA NUMECA Software: AutoGrid5<sup>™</sup> for hexahedral grid – FINE<sup>™</sup>/Turbo for CFD computation NUMECA

20

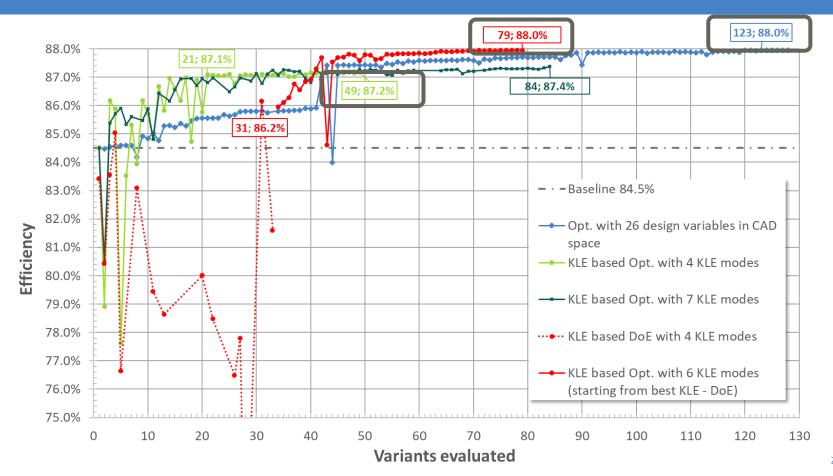
Setup:


generation

- Revolutions per min: 37,000
- Mass flow rate: 1.35kg/s

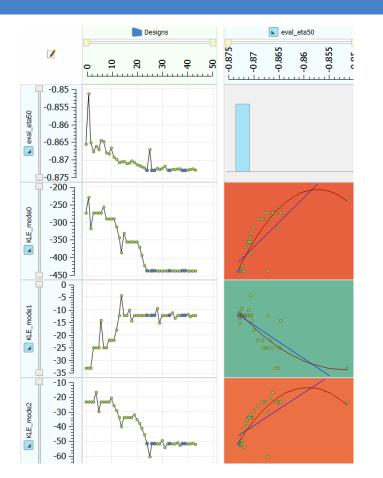



# **Optimization in KLE space**


# Variability with each KLE mode



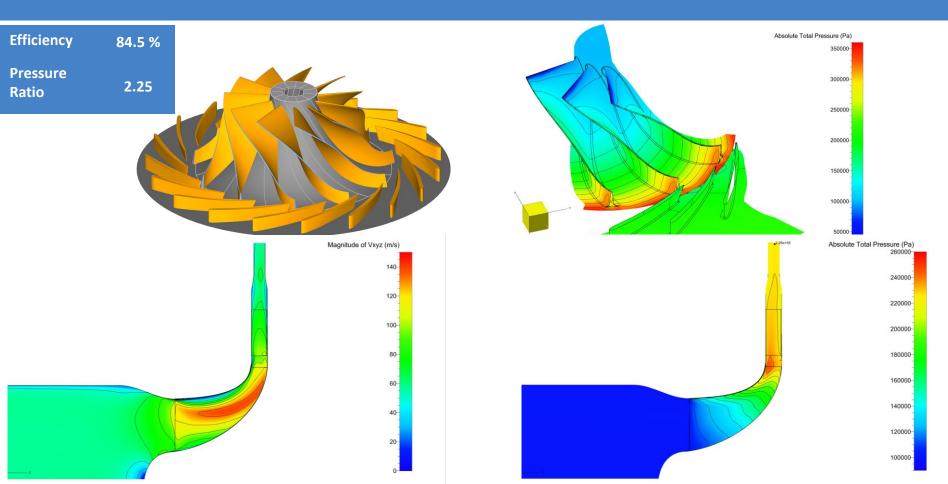
## **Results for total pressure ratio and efficiency**



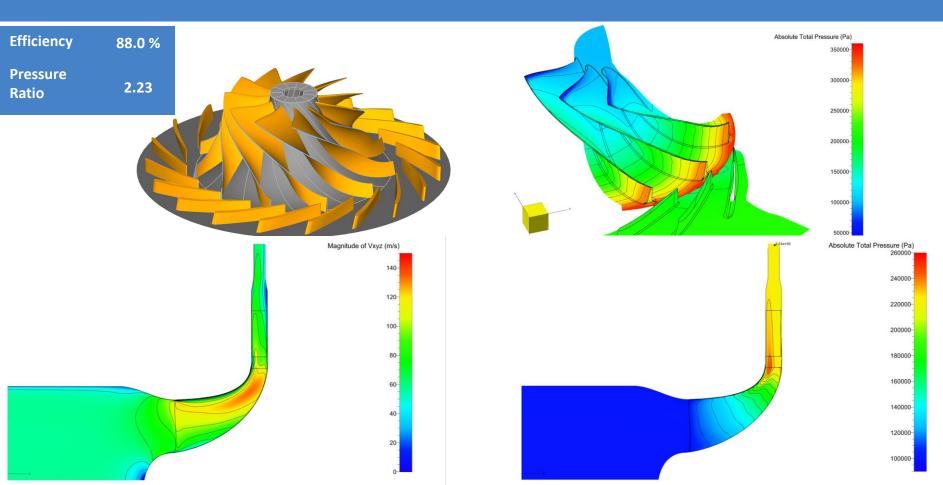

# **Optimization history for the compressor**



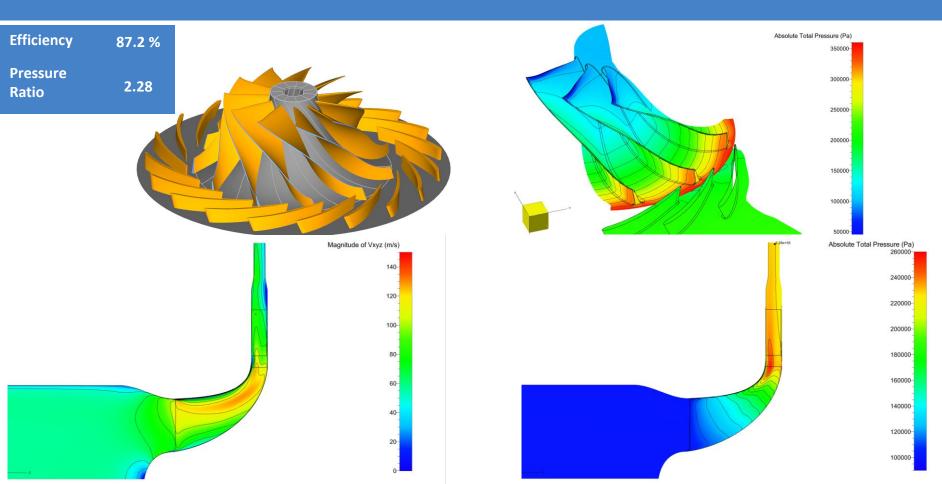
2019


# **Optimization in KLE space**

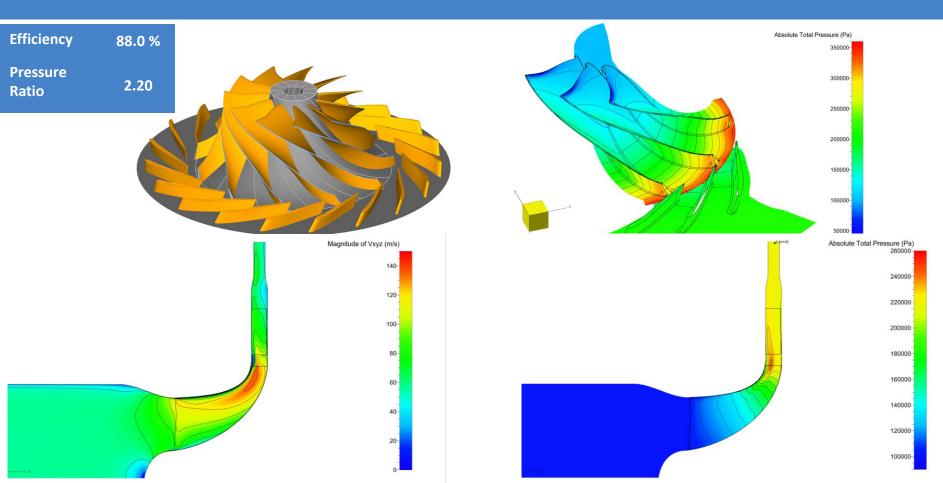



- Optimization in CAD space with 26 design variables for comparison
  - Starting from the baseline design
  - 128 variants evaluated with 3.5% improvement

- Optimization in **KLE space** with **4 KLE modes** 
  - Starting from the baseline design
  - 49 variants evaluated with 2.7% improvement
- Optimization in **KLE space** with **6 KLE modes** 
  - Starting from the best DoE result (4 KLE modes)
  - 79 variants evaluated (33 DoE + 46 Opt. designs)
  - 1.7% + 1.8% = **3.5%** improvement


## Baseline

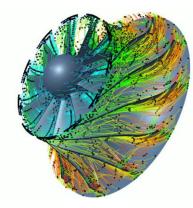



## **Des 123 – Best Opt. With 26 Design Variables**



## **Des 049 – Best KLE based Opt. with 4 KLE modes**




# Des 079 – Best KLE based Opt. with 6 KLE modes (best DoE start)



# Conclusions

#### Conclusion





|     |                            |   |       |       |       | KLE mode 1 – main blade    | KLE mode 2 – diffuser              |
|-----|----------------------------|---|-------|-------|-------|----------------------------|------------------------------------|
| Des | sign Variables             |   |       |       |       | KLE HIOUE I – HIAIII DIAUE | KLE MOUE Z – umuser                |
|     | Design Variable            |   | Lower | Value | Upper | 40 60/                     |                                    |
| 1   | ANGLE_HUB                  | * | -10   | 0     | 10    | 48.6%                      | 81.7%                              |
| 2   | ANGLE_SHROUD               | • | -10   | 0     | 10    |                            |                                    |
| 3   | MID_SHIFT_DELTA            | * | -2    | 0     | 2     |                            |                                    |
| 4   | MID_SHIFT_POS              | * | 0.3   | 0.5   | 0.8   |                            |                                    |
| 5   | BETA_HUB_LE                | • | 40    | 45    | 50    |                            |                                    |
| 6   | BETA_HUB_TE                | * | 45    | 50    | 55    |                            |                                    |
| 7   | BETA_SHROUD_LE             | * | 25    | 30    | 35    |                            |                                    |
| 8   | BETA_SHROUD_TE             | • | 40    | 41.7  | 50    |                            |                                    |
| 9   | BETA_TanFactor_HUB_LE      | * | 0.4   | 0     | 0.6   |                            |                                    |
| 10  | BETA_TanFactor_HUB_TE      | * | 0.4   | 0     | 8     |                            |                                    |
| 11  | BETA_Tan_HUB_LE            | * | -45   | -     | -05   |                            |                                    |
| 12  | BETA_Tan_HUB_TE            | * | -65   | - 0   | -55   |                            |                                    |
| 13  | BETA_TAN_SHROUD_LE         | * | -15   | -     |       |                            |                                    |
| 14  | BETA_TAN_SHROUD_TE         | * | -40   | -35   | -30   | KLE mode 3 – diffuser      | KLE mode 4 – main blade            |
| 15  | THETA_DELTA_SHROUD_LE      | * | -10   | -2    | 0     |                            |                                    |
| 16  | THETA_DELTA_SHROUD_TE      | • | -10   | 0     | 10    | 93.7%                      | 95.7%                              |
| 17  | Diff_BETA_HUB_LE           | * | 17    | 19    | 25    |                            | 55.770                             |
| 18  | DIFF_BETA_HUB_TE           | * | 28    | 37    | 44    |                            |                                    |
| 19  | Diff_BETA_SHROUD_LE_Delta  | • | -4.5  | -2    | 3.5   | Massive parame             | ter reduction                      |
| 20  | Diff_BETA_SHROUD_TE_Delta  | * | -5    | -1    | 8     |                            |                                    |
| 21  | Diff_BETA_Tan_HUB_LE       | * | -30   | -20   | -10   | 26 design variah           | es can be reduced to 4 KLE modes   |
| 22  | Diff_BETA_Tan_HUB_TE       | • | -7.5  | 0     | 10    | 20 design variab           | es can be reduced to 4 KLL modes   |
| 23  | Diff_BETA_Tan_SHROUD_LE    | * | -30   | -20   | -10   | retaining more t           | nan 95% of the original variance   |
| 24  | Diff_BETA_Tan_SHROUD_TE    | * | -10   | 10    | 20    | retaining more t           | an observe on the onginar variance |
| 25  | DIFF_THETA_DELTA_SHROUD_LE | • | -15   | -3    | 8.5   | Bird 2                     |                                    |
| 26  | DIFF_THETA_DELTA_SHROUD_TE | * | -5    | 0     | 5     |                            |                                    |

## Conclusions

- The less free variables to work with the better
- An approach has been developed with which to substantially reduce design spaces made of CAD variables by mapping them into spaces spanned by a different kind of variables, dubbed super parameters
- A back-transformation from KLE to CAD space is needed for complex models
- Massive parameter reduction for faster fluid-dynamic optimization of shapes were shown

- Outlook and future work:
  - Combine parametric-adjoint solutions with KLE (sensitivity analysis)

#### **Promising combination**

High-level parametric models with further parameter reduction

#### Acknowledgements

- Parts of the work presented stem from the German research & development project GAMMA (Effiziente GAsmotoren für MaritiMe Anwendungen der nächsten Generation – Efficient GAs engines for MaritiMe Applications of the next generation), headed by MTU Friedrichshafen GmbH with the Technical University Darmstadt, Numeca Ingenieurbüro and FRIENDSHIP SYSTEMS as partners. The project is funded by the Federal Republic of Germany, Federal Ministry of Economics and Technology on the orders of the German Bundestag and is supervised and administrated by PtJ.
- We would very much like to thank
   Dr. Riccardo Pellegrini and Dr. Matteo Diez from
   CNR-INM (National Research Council-Institute of
   Marine Engineering / INSEAN, Rome) for
   introducing us to the concept of parameter space
   reduction and for the many enlightening
   discussions. We would also like to acknowledge the
   work by our colleague Stefan Wunderlich who
   supported the KLE implementation within CAESES<sup>®</sup>
   (www.caeses.com).

#### References



Diez, M.; Campana, E.F. and Stern, F., 2015. Design-space Dimensionality Reduction in Shape Optimization by Karhunen–Loève Expansion. Computer Methods in Applied Mechanics and Engineering, 283, pp.1525-1544;



Pellegrini, R., 2017. Design-Space Dimensionality Reduction for Single- and Multi-Disciplinary Shape Optimization. CAESES Users Meeting, Potsdam.



Bergmann, E; Fütterer, C.; Harries, S and Palluch, J, 2018. Massive Parameter Reduction for faster Fluid-dynamic Optimization of Shapes, International CAE Conference and Exhibition

# www.friendship-systems.com

Hedi Böttcher B.Sc.

boettcher@friendship-systems.com

Dr.-Ing. Stefan Harries MSE

harries@friendship-systems.com

Carsten Fütterer M.Sc.

fuetterer@friendship-systems.com