Parametric Design and Optimization of a Battery-driven Catamaran in CAESES

Aphrodite Kanellopoulou, George Zaraphonitis, NTUA Yan Xing-Kaeding, Apostolos Papanikolaou, HSVA

CAESES User's Meeting 2019, September, Berlin

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No 769303

Agenda

Project Outline

- Parametric design & hydrodynamic optimization of a catamaran vessel, developed in the framework of the European R&D project TrAM (Transport: Advanced and Modular)
- Objectives of TrAM project:
 - > To develop a series of zero emission fast passenger ferry designs
 - ➢ To lower production cost by modular design
 - > To prove the viability of electric-powered high-speed vessels
 - \checkmark A prototype will be built during the project period and put into operation in Stavanger, Norway

CAESES Parametric model

Background information

- Sketch of General Arrangement developed by Fjellstrand Shipyard in agreement with vessel operator
- Main Dimensions:

≻ Length OA	31.0m
≻ Beam OA	9.0m
Demihull Length OA	30.6m

 Based on the background information, a parametric geometry model for the hullform was created by NTUA in CAESES

Definition Curves

5

Surfaces

Hullform after Lackenby Transformation

• After the hullform definition, a Lackenby transformation was used

Prismatic coefficient adjustment

longitudinal position of the centre of buoyancy adjustment

ΓAΜ

Main Global Parameters

➢ Waterline Length

Main Global Parameters

Waterline Length

≻ <u>Beam</u>

ТгАМ

Main Global Parameters

Waterline Length

≻ Beam

➢ <u>Draught</u>

Main Local Parameters

➤ Transom width

Main Local Parameters

> Transom width

 $\langle \cdot \rangle$

Transom Chine Height

ТгАМ

Main Local Parameters

- ➤ Transom width
- Transom Chine Height
- Shape of fwd profile

Potential Flow Calculations using the Parametric Model by HSVA

Background of HSVA in-house code v-SHALLO

- ➤v-Shallo is a potential flow/ 3D panel method for the calculation of the wave resistance
- The code estimates viscous resistance by empirical Method (ITTC), while considering
 - ➤ accurate wetted surface
 - inhomogeneous velocity distribution
- Accounts for the effect of transom sterns
- >Automatic re-panelling for each iteration
 - ≻ Ship hull
 - ➤ automatic control of free surface mesh
- ➢Graphical User Interface

HSVA wave resistance panel codewhat can v-SHALLO do?

- Indication on improvement through study of details of flow and wave pattern
- Automatic hull form optimisation by use of defined objective function
- Assessment of wave wash by evaluation of pressure at sea bottom and radiated wave field

v-SHALLO Integration into CAESES

- ✓ v -SHALLO was the first of HSVA's simulation tools with completed integration into the CAESES framework
- ✓ Optimisation can be run per mouse-click under either linux or wondows

Preliminary calculations for Reference Case using v-SHALLO and FreSCo+ (HSVA in-house RANSE code)

Principal Dimensions of a reference catamaran

	Symbol	Model	Ship
Length Overall	L _{OA} (m)	4.622	35.00
Length on designed waterline	L _{wL} (m)	4.373	33.11
Length between Perpendiculars	L _{pp} (m)	4.411	33.40
Beam moulded	B (m)	1.334	10.10
Beam waterline	B _{WL} (m)	0.668	5.060
Draught at ½ L _{pp}	T (m)	0.202	1.533
Draught at FP	T _{FP} (m)	0.202	1.533
Draught at AP	T _{AP} (m)	0.202	1.533
Volume of Displacement	Δ (m³)	0.304	131.9
Prismatic coefficient	C _P	0.694	0.694
Block coefficient	C _B	0.463	0.463
Midship section coefficient	C _M	0.666	0.666
Longitudinal C.B. rel. to L _{pp} /2	LCB % (L _{pp})	-7.506	-7.506
Wetted surface	S (m ²)	4.526	259.5

v-Shallo Panel mesh

TFAM

What is HSVA in-house RANSE code FreSCo+?

In-house RANS Solver Fresco*

- ✓ Finite Volume method
- ✓ Unstructured grid discretisation (including overlapping grids)
- ✓ Turbulence modelling
- ✓ VOF method for free surface (HRIC scheme etc.) and cavitation computation
- $\checkmark\,$ Overlapping grid technique and 6-DoF ship motion
- ✓ Parallel computing using MPI communications protocol

QCM for Propeller

- \checkmark A vertex lattice method
- $\checkmark\,$ Blades of propeller reduced to lifting surface
- RANS-QCM Self-Propulsion Calculation for Local Optimisation as On-going Work in TrAM Project

Free Surface Deformation at different speeds

Comparison on resistance results of v-SHALLO and FreSCo+ with available model tests

- Both FreSCo+ and v-SHALLO under-predicte the total calm water resistance; The resistance predcited by FreSCo+ is quite satisfactary, especially in lower speed range (area of interest);
- Good agreement with experiment in terms of trim, sinkage by FreSCo+ and the trim and sinkage predicted by v-SHALLO is completely off;
- v-SHALLO is prefered tool for global optimisation due to its advantage in performance; The resistance predicted by v-SHALLO however needs to be corrected (in form factor) for practical applications;

FAM

Design of Experiments (DoE) for Stavanger Demonstrator using v-SHALLO

DoE for Stavanger Demonstrator	Description	Overall Beam of 9.0m	Overall Beam of 9.5m
(Global) Design Variables for demihull	LWL	29~30.2m	28~29.2m
	HB (half Beam)	1~1.3m	1~1.3m
	T_INIT 1.2~1.6m		1.2~1.6m
	CHINEY_RATIO (transom)	0.8~0.85	0.8~0.85
Design Conditions	Weights	75, 80, 85 m ³	75, 80, 85 m ³
	Ship Speed	21, 23, 25 kn	21, 23, 25 kn
Design Constraints	Battery space	1634x2029mm	1634x2029mm
Design Variants	For each condition	200	200
Design Results	Number of calculations	1800	1800
Evaluated Variables		RT	RT
(some examples are listed here)		Sinkage/Trim	Sinkage/Trim
		Sep_deminhull	Sep_deminhull

v-SHALLO (Sobol) DoE results

RT vs. HB (half Beam of demihull)

ТгАМ

RT vs. Draft

v-SHALLO results correction using Form Factors (1+k) calculated by FreSCo+

The total resistance coefficient computed by n-SHALLO can be subdivided into two parts:

 $C_t = C_w + (1+k) * C_f$

The second part contains a friction coefficient from the ITTC 1957 correlation line multiplied by a form factor (1+k), where k is determined as follows:

$$1 + k = \int_{S_{wetted}} \overrightarrow{v^2} \, dS/u^2 S_{initial}$$

This form factor accounts for the change in wetted surface as

well as for the inhomogeneous velocity distribution.

Computed Form factors from Doule Body RANSE computations using three grid resolutions:

Grid resolution	Form Factor (1+k)
Coarse grid	1.10
Middle grid	1.09
Fine grid	1.08

ГГАМ

Use of Surrogate Models instead of Direct Calculations for Reduced Computational Time

- Various surrogate models were generated and tested for calm water resistance calculation based on 1. v-Shallo results.
- Most accurate and fast method: MARS (Multivariate Adaptive Regression Splines) (error $\leq \pm 0.5\%$). 2.
- Surrogate models replaced direct calculations by CFD tools in optimization studies. 3.

Volume of 80m³ at 21kn

ГАМ

Global Optimization Studies

1. Global optimization studies performed using NSGA-II genetic algorithm

General		>
Generations	10	÷ 0
Population Size	100	÷ 0
Mutation Probability	0.01	0
Crossover Probability	0.9	0

- 1. Objective of the study: to minimize calm water resistance of the bare hull
- 2. To obtain hullform with superior characteristics in a range of displacements & speeds, the following weighted objective function is used:

$$\begin{split} R_{T_{OF}} &= 0.12R_{T,21kn,75m^3} + 0.20R_{T,23kn,75m^3} + 0.08R_{T,25kn,75m^3} + \\ &\quad 0.09R_{T,21kn,80m^3} + 0.15R_{T,23kn,80m^3} + 0.06R_{T,25kn,80m^3} + \\ &\quad 0.09R_{T,21kn,85m^3} + 0.15R_{T,23kn,85m^3} + 0.06R_{T,25kn,85m^3} \end{split}$$

- 1. Constraints:
 - 1. Minimum demihull width & height for installation of batteries
 - 2. Height of tunnel at centreline for propeller installation

Design Variables

- According to the 1st Design Scenario:
 - > catamaran's length overall fixed at 31.0m
 - ➢ beam overall fixed at 9.0m
- Design variables considered:
 - Waterline Length ------
 - Demihull's Beam ------
 - Initial Draught ------
 - Transom width ------

	Design Variable		Lower	Value	Upper	Active	
1	01_LWL	•	29	30.1	30.2	×	8
2	02_HBDES	•	1	1.1	1.3	×	8
3	03_TINIT	•	1.2	1.3	1.6	×	8
4	01_CHINEY_ATS0_RATIO	+	0.8	0.81	0.85	×	8

Total Designs Produced: 1000

> 824 Feasible

> 176 Unfeasible

Displacement Volume: 75m³

Vs=21kn

Vs=23kn

Vs=25kn

Displacement Volume: 80m³

Vs=21kn

Vs=23kn

Vs=25kn

Displacement Volume: 85m³

Vs=21kn

Vs=23kn

Vs=25kn

Optimum Design Selection

ТгАМ

 Based on hydrodynamic characteristics and construction/maintenance issues, an overall optimum design was selected

Design Variables:

01_LWL	29.84
02_HBDES	1.11
03_TINIT	1.22
01_CHINEY_ATS0_RATIO	0.831

. <u>Results:</u>

i.

	at 75m3	at 80m3	at 85m3
LWL	29.29	29.34	29.39
Beam at WL	2.442	2.442	2.444
Draft	1.226	1.272	1.317
Rt_21kn	42.979	46.162	49.443
Rt_23kn	45.290	47.724	51.085
Rt_25kn	50.671	52.690	55.197

Conclusions & Next Steps

- Parametric model for fast catamaran design developed by NTUA in CAESES, integrated with HSVA's v-Shallo
- Development of surrogate models for calm water resistance on the basis of CFD results
- Multi-objective Optimization studies using NSGA-II genetic algorithm
- Conducted global optimization studies show that:
 - > Demihull hullforms with smaller beam have lower calm water resistance for lightest displacements
 - > At higher speeds and displacements, beamier hullforms are performing better
 - > The demihull separation distance proved less significant in the studied range
- Based on hydrodynamic characteristics and construction/maintenance issues an overall optimum was selected for more refined optimisation
- Local hullform optimization for improved resistance and propulsion characteristics are currently in progress using HSVA's CFD viscous flow RANS solver FreSCo+
- The resulting hullform will be tank-tested by HSVA and used for building of the Stavanger prototype

Thank you for your attention

Parametric Design and Optimization of a battery-driven Catamaran in CAESES

Malte Mittendorf, FH Kiel

CAESES Users Meeting 2019, Berlin

Parametric Design and Optimization of a battery-driven Catamaran in CAESES

Malte Mittendorf

Thesis-Outline

- 1. Estimation of R_T by s/w *catares* and implementation in *CAESES*
- 2. Validation studies
- 3. Two-stage optimization procedure with *catares* and nuShallo
- Global Optimization: Resistance Optimization based on operational profile
- Local Optimization: Optimization with respect to wave resistance and wash
- 4. RANSE-Verification of results with FreSCo+

CAESES Users Meeting 2019, Berlin

Introduction to Thin Ship Theory

- Applies to Wave Pattern Resistance of symmetrical thin hulls (B/L<<1)
- Use of Green's function for capturing free surface boundary condition
- Kelvin sources are placed on symmetry-plane of each demihull
- Source strength dependent on velocity and local slope of waterlines $\sigma(x,0,z) = -\frac{U}{2\pi} \frac{\partial f}{\partial x}(x,z)$
- Source Deficit at Transom → fitting of a virtual appendage necessary
- Use of NTUA's software RES based on *modified thin ship theory* → Kelvin sources placed on 3D panels

CAESES Users Meeting 2019, Berlin Parametric Design and Optimization of a battery-driven Catamaran in CAESES Malte Mittendorf

• Python Compiler as Executable in Config

⋪≣◀╞	> python3	○ 🗋 x
	FLo	calApplication
🔅 python	3	0
General		
Executable	/usr/bin/python3	0 🗆
Stored in Project		0
Stored in User Config	×	0

CAESES Users Meeting 2019, Berlin Parametric Design and Optimization of a battery-driven Catamaran in CAESES Malte Mittendorf

- Python Compiler as Executable in Config
- Parse RES-Inputfile from .pan and ASCII file

- Python Compiler as Executable in Config
- Parse RES-Inputfile from .pan and ASCII file

- Python Compiler as Executable in Config
- Parse RES-Inputfile from .pan and ASCII file
- Define Subsurfaces on dynamic waterline
- MeshEngine for .pan-file
- Introduction of empirical calculations for viscous resistance component

Parametric Design and Optimization of a battery-driven Catamaran in CAESES *Malte Mittendorf*

CAESES Users Meeting 2019, Berlin

- 1st Scenario & 85m³ Displ. Design
- Objective Functions:

 $R_{T,21kts}, R_{T,23kts}, R_{T,25kts}, R_{T,27kts}, R_{T,30kts}$

- Additional Design Variables: SP9SHAPE_ATTDES, SP9SHAPE_LOW
- → forebody optimization
- Geometrical Boundary Condition: minimal Width at Doublebottom Height

Exploration

nuShallo

catares

LWL -	-0.148	0.048	0.147	0.229	0.2926	LWL -	-0.23	-0.15	0.079	0.004	0.105
HBDES -	0.295	0.042	-0.12	-0.22	-0.28	HBDES -	0.725	0.768	0.779	0.76	0.708
CHINE_Y -	-0.084	0.0475	0.1717	0.236	0.27	CHINE_Y -	· -0.158	-0.155	-0.124	-0.0724	0.0208
TINIT -	-0.0032	-0.001	0.011	0.023	0.021	TINIT -	0.1068	0.1028	0.092	0.0924	0.099
SHAPE_LOW -	-0.65	-0.723	-0.725	-0.698	-0.668	SHAPE_LOW -	-0.42	-0.381	-0.378	-0.4083	-0.4665
SHAPE_ATTDES -	-0.299	-0.352	-0.347	-0.352	-0.355	SHAPE_ATTDES -	-0.085	-0.0755	-0.075	-0.088	-0.089
Ŕ	ICHEN F	Ilesten F	IL25KII P	il27km p	1130Km	Ŕ	FIGHER PE	Ilesten P	il25km p	FIGTERN R	13040

Exploitation

CAESES Users Meeting 2019, Berlin

Parametric Design and Optimization of a battery-driven Catamaran in CAESES *Malte Mittendorf*

MCDM

CAESES Users Meeting 2019, Berlin

Parametric Design and Optimization of a battery-driven Catamaran in CAESES *Malte Mittendorf*

Results

• Design Variables

Parameter	\mathbf{Unit}	Baseline	ν -SHALLO	catares
Index	[-]		1195	1492
LWL	[m]	30.1	30.4011	30.2227
HBDES	[m]	1.1	1.0963	1.0637
TINIT	[m]	1.3	1.3920	1.4878
$CHINE_Y_ATS0$	[-]	0.81	0.8233	0.8318
$SP9SHAPE_LOW$	[-]	1.2	1.4653	1.4629
SP9SHAPE_ATTDES	[-]	0.85	1.0993	1.0647

• Hydrostatic Values

Parameter	\mathbf{Unit}	Baseline	ν -SHALLO	catares
T	[m]	1.326	1.298	1.332
$S/\nabla^{\frac{2}{3}}$	[-]	9.868	9.884	9.861
LCB	[m]	13.87	14.28	13.98
LCF	[m]	12.11	12.55	12.33

Discussion of Results & Conclusions (1)

•	Cross-check at 23 kts	$R_T/\Delta[-]$	catares	Change [%]	ν -Shallo	Change [%]
		Baseline	0.549	-	0.533	-
		NS-1195	0.542	-1.32	0.525	-1.44
		Cat-1492	0.541	-1.57	0.528	-0.91

- Resistance reduction for catares 1.57% → RANSE FreSCo+: 1.1%
- R_{T} decrease for the whole speed range; on average: 1.63% (nuShallo: 1.47%)
- Increased wetted surface WSA and thus R_T for nuShallo optimal design according to FreSCo+
- More convex lines in forebody lead to spray → fitting Sprayrails necessary
- → Modified Thin Ship Theory proves to be well applicable for resistance prediction and efficient optimization of fast displacement catamarans

CAESES Users Meeting 2019, Berlin

Parametric Design and Optimization of a battery-driven Catamaran in CAESES *Malte Mittendorf*

Discussion of Results & Conclusions (2)

- Combination of NSGA-II, MCDM and Simplex prove very efficient (local optimization)
- Virtual Appendage to Thin Ship Theory method leads to increased accuracy by modelling the transom stern effect

47

Discussion of Results & Conclusions (2)

Malte Mittendorf

- Combination of NSGA-II, MCDM and Simplex prove very efficient (local optimization)
- Virtual Appendage to Thin Ship Theory method leads to increased accuracy by modelling the transom stern effect

Discussion of Results & Conclusions (2)

- Combination of NSGA-II, MCDM and Simplex prove very efficient (local optimization)
- Virtual Appendage to Thin Ship Theory method leads to increased accuracy by modelling the transom stern effect
- Questionable applicability of used panel methods for high Fn
- Use of Adjoint CFD would have made more sense due to dominant viscous resistance
- CAESES proved to be a very userfriendly, easy to learn and powerful tool

CAESES Users Meeting 2019, Berlin Parametric Design and Optimization of a battery-driven Catamaran in CAESES Malte Mittendorf

Thank you for your Attention!

Any Questions or Suggestions?

malte.mittendorf@web.de

CAESES Users Meeting 2019, Berlin Parametric Design and Optimization of a battery-driven Catamaran in CAESES Malte Mittendorf

