Design of ships in waves using CAESES and SHIPFLOW

presented by Leif Broberg FLOWTECH International

Content

- Overview of the tools
- Case study
 - Optimizations
 - Cross-check
- Summary

Overview of

SHIPFLOW and CAESES

Integration of tools

made by FRIENDHSHIP SYSTEMS

Shape variations

Optimization methods

Resource management

- Grid Generation
- Flow simulations
- Result processing

The SHIPFLOW system

Flow solvers

- BASIC
 - XPAN potential flow solver. wave pattern, wave resistance, pressure, sinkage&trim
 - XBOUND thin boundary layer method surface streamlines, friction drag, b.l. thickness
 - Best suited for wave resistance optimizations

RANS

- XCHAP RANS equations solver flow field, viscous resistance, self-propulsion, free-surface
- Applied successfully to delivered power optimizations

MOTIONS

- time dependent potential flow solver
- motions and added resistance in waves

Optimization Strategy - Efficient choice of solvers

Case Study

Case study provided for the NJTF optimization workshop 2018

- Particulars:
 - Loa(m) 322.5 m
 - Lpp(m) 314.6
 - B(m) 52.5
 - T(m) 18.1
 - Displacement (m³) 252045.4
 - Propeller diameter: 9.6m
- Conditions:
 - Vs=15kn
- Optimization target:
 - Resistance
- Constraints:
 - Lpp, ship width B, draught T remain unchanged;
 - Lcb (Lpp%) ≥ 3%
 - Displacement change less than 1500m³;

Optimization Strategy

Added resistance in waves optimization

- Baseline analysis and target conditions
- Transformation and design variables
- Optimization process
- Comparison of variants

• Baseline analysis

• Transformation and design variables

Added resistance in waves variant comparison

SHIPFLOW MOTIONS

Averaged pressure distribution (over one wave period) - bow

S

Averaged pressure distribution (over one wave period) – stern

No noticable difference

Added resistance in waves: $\lambda = 0.6Lpp$

Added resistance in waves variant comparison

SHIPFLOW a flowtech product

KCS results - comparison with experiments

- experimental data taken from Tokyo 2015 Workshop summary
- Average of FORCE, IIHR and OU measurements including standard deviation bars

KVLCC2 results - comparison with experiments

Optimization Strategy

a flowtech product

Wave resistance optimization

Transformation method – Delta Shift

Optimization history

Waterline shape – deviation and curvature

Forebody – Displacement correction

Forebody – Displacement correction

Optimization Strategy

Viscous resistance optimization

Shape variations template (used previously for JBC)

Optimization method – NSGA2

Optimization Strategy

Cross-check of the variants with VOF

Cross-check of the variants with VOF - resistance - RTm

RT-VOF - cross check

Cross-check of the variants with VOF – wave pattern

S

Comments and suggestions

Delivered Power - model scale calculations

Resistance

Suggestion: Use PD not RT as your objective

Comments

- Optimized hull form in 1 day!
- CAESES and SHIPFLOW is an excellent environment for hydrodynamic optimizations
- Partially parametric modelling used in CAESES is flexible, easy to apply and gives good results
- SHIPFLOW MOTIONS is feasible to use for shape optimization for minimum added resistance in waves
- SHIPFLOW RANS aftbody optimization is possible thanks to very fast solver
 - We must optimize full block coefficient hull forms for minimum delivered power using self-propulsion computations.

Thank You

