# **ELONATIC** CONSULTING & ENGINEERING

# CAESES - CADMATIC link in Concept Design

Markus Jokinen @ CAESES User Meeting, Berlin 2019-09-20







# Who am I?



#### Markus Jokinen

**Project Engineer** 

M.Sc. (Naval Arch.) Aalto University, Finland

#### **Work Experience**

- Since 02.2016 Permanent Employee at Elomatic
- 02.-09.2016 Master Thesis at Elomatic



### **Elomatic**



#### Intelligent engineering

#### **Key facts**

- Consulting and engineering
- 50 years of tradition
- 1000+ specialists
- Multidisciplinary
- Globally operating
- Cadmatic 3D software







#### Battery-driven DE Ferry



**Holiship WP17 Application case Double Ended Ferry** 



### **CAESES - CADMATIC** Agenda



- 1. Objective of Holiship
- 2. Design process in Caeses Cadmatic
- 3. Parameters in Cadmatic
- 4. Starting point for optimization
- 5. Caeses model and optimization







#### **Objective of Holiship**









#### Target to produce Intelligent General Arrangement







Optimization link between Caeses and Cadmatic

#### Caeses modifies:

- Hull shape and
- Parameters in batch mode
- Parametric views and plates will update in certain time intervals
- Hull shape and parameters optimized based on:
  - Stability,
  - Resistance (OPEX)
  - Required areas and volumes (car lanes, tanks, etc.)





8





### **CAESES - CADMATIC** Parameters



#### • Idea of Parameters table:

- Define bulkhead and deck positions and angles
- Use formulas to define positions and angles
- Quickly change geometry by changing parameters
- Formulas can define bulkhead and deck positions (Value):
  - in respect of other bulkheads
  - using required area or volume as a precondition

| Gen        | erai |         |             |                   |        | 0 0                                             |
|------------|------|---------|-------------|-------------------|--------|-------------------------------------------------|
|            |      |         |             | Parameters        |        |                                                 |
| Filter     | Ind  | ex Type | Name        | Expression        | Value  | Comment                                         |
|            | 1    | length  | frame       | 700               | 700    |                                                 |
|            | 2    | length  | MFB1        | -48*frame         | -33600 |                                                 |
| 🔽 Length   | 3    | length  | MFB2        | MFB1+16*frame     | -22400 |                                                 |
| 😺 Breadth  | 4    | length  | MFB3        | MFB2+16*frame     | -11200 |                                                 |
|            | 5    | length  | MFB4        | MFB3+8*frame      | -5600  |                                                 |
| M Height   | 6    | length  | MFB5        | -1*MFB4           | 5600   |                                                 |
| 🚺 Distance | 7    | length  | MFB6        | -1*MFB3           | 11200  |                                                 |
| _          | 8    | length  | MFB7        | -1*MFB2           | 22400  |                                                 |
| 🔽 Angle    | 9    | length  | MFB8        | -1*MFB1           | 33600  |                                                 |
|            | 10   | length  | TBH040101   | MFB4-4*frame      | -8400  | Sewage tank TBH on deck 01, MVZ4                |
|            | 11   | length  | TBH050101   | MFB4+2*frame      | -4200  | MDO tanks on deck 01, MVZ5                      |
|            | 12   | length  | TBH050102   | TBH050101         | -4200  | Waste oil tank on deck 01, MVZ5                 |
|            | 13   | length  | TBH050103   | MFB4+2*frame      | -4200  | Sea chest on deck 01, MVZ5                      |
|            | 14   | length  | TBH050104   | TBH050101+6*frame | 0      | TBH between MDO, bilge & lubrication tanks on ( |
|            | 15   | length  | TBH050105   | TBH050104+4*frame | 2800   | Bilge & lubrication tank TBH on deck 01, MVZ5   |
|            | 16   | length  | TBH060101_F | PMFB6-4*frame     | 8400   | Fresh water tank on deck 01, MVZ6               |
|            | 17   | length  | TBH010201   | MFB1-4*frame      | -36400 | Fire station on deck 02, MVZ1                   |
|            | 18   | length  | TBH020201   | MFB1+1*frame      | -32900 | TBH between fire station & Escape room on dec   |
|            | 19   | length  | TBH020202   | TBH020201+3*frame | -30800 | Store TBH on deck 02, MVZ2                      |
|            | 20   | length  | TBH030201   | MFB3              | -11200 | TBH between Embarkation area & Pax inva area    |
|            | Ind  | ex Type | Name        | Expression        | Value  | Comment                                         |

Parameters stored as xml format -> can be changed by Caeses



10



• After going through first design spiral, we have:

- Initial GA (Cadmatic)
- Room types and weights
- Initial steel structure + weight (Cadmatic Hull)
- Main component weights (optional, Cadmatic Outfitting)
- Initial cost (Caeses)
- Power Res. (Caeses + CFD)
- Next hull shape and geometry are modified via Caeses

Link between Cadmatic Hilltop & Caeses is established via xml files

Starting point for

optimization

#### **SELOMATIC**

### CAESES - CADMATIC Case Study



#### **Features:**

- Operates in archipelago
- Ice strenghtened vessel
- Battery-driven ferry

#### Table 3. Initial sizing of the ferry

|            | INITIAL | RANGE      |
|------------|---------|------------|
| CARS       | 150     | 150+       |
| PAX        | 400     | 400        |
| LANES      | 7       | 6-8        |
| L [M]      | 121     | Max. 129,9 |
| B [M]      | 19,2    | 16,7-22    |
| T [M]      | 2,5     | No limit   |
| D [M]      | 4,5     | Freeboard  |
| DWT [TONS] | 400     | 400+       |





### CAESES - CADMATIC Route









#### **ELOMATIC**

14

© Elomatic







Caeses model

0

Th 🗛



#### **Functions in Caeses**

1

|               |                           |              |               | —                |     |   |
|---------------|---------------------------|--------------|---------------|------------------|-----|---|
| P 🖿 CAD 🖵     | Connections Doptimization | ۲            | ★ ≡ ◀ ।       | 01_parameters    |     | × |
| Туре          | Name Quick Find (Ctrl+F)  |              |               |                  | NPV |   |
|               | 🔺 📄 baseline              | <b>N</b> (2) | F NPV_ca      | k 🛛 🕫 🚺          |     | L |
| FScope        | ▷ 🔲 00_setup              | <b>N</b>     | Company       |                  |     |   |
| FScope        | 🔺 💼 01_parameters         | N (?)        | General       |                  | 1   |   |
| FScope        | derived                   | 0            |               | 19.63659732      |     |   |
| FScope        | calm_water_Surface_area   | 0            |               | 101 paramotorol  | ň.  |   |
| FScope        | CAPEX                     | 0            | Capex [M€]    | derived   CAPEX  | 0   |   |
| FScope        | Car_number                | 0            |               | CAPEXtotal       |     |   |
| FScope        | 🖻 💼 draft                 | 0            |               |                  |     |   |
| FScope        | EquipmentNumber           | 0            |               | 0.715000         |     |   |
| FScope        | freeboard                 | 0            |               | 0.715999         | _   |   |
| FScope        | iceClass                  | 0            | Opex / year   | 01_parameters    | 0   |   |
| FScope        | A NetPresentValue         | 0            | [M€]          | derived OPEX     |     |   |
| FFeature::NPV | + F NPV_calc              | 0            |               | opex_total_year  |     |   |
| FParameter    | 📘 lifetime_in_years       | 0            |               |                  |     |   |
| FParameter    | NPV_ME                    |              | Interest rate | 6                | 0   | • |
| FParameter    | NPV_Optimal               | 0            | [%]           |                  |     |   |
| FScope        | OPEX                      | 0            |               | 25               |     |   |
| FScope        | Electricity_cost          | 0            | Time in       |                  | 0   |   |
| FScope        | Engine_power              | 0            | years         | inetime_in_years | -   |   |
| FParameter    | 🕟 crew_cost_day           | 0            |               |                  |     |   |
| FParameter    | 📐 Fuel_cost_per_day       | 2            | Percentage    |                  |     |   |

Connections Optimization Visualization Features View Help



File

CAD

16







### **CAESES - CADMATIC** Optimization



- Optimization run in batch mode
- Ways:
  - Either directly changing Cadmatic model or
  - By previously created surrogate model (responce surface method RSM)





Optimization

|     |                      | 🛅 Dakotal   | NPV_10_results | 🕻 🛅 Dakota | aNPV_19_results × | 🛅 Dakota | NPV_20_res |
|-----|----------------------|-------------|----------------|------------|-------------------|----------|------------|
|     | Show Charts          | 🖬 🖪 📁       | csv 🗂 🖸 🚺      | <b>X</b>   |                   |          | 9          |
| _   | ΦΣ                   | LOA         | ⊾ Bmax         | NPV_ME     | NPV_Optima        | l 📘 tota | al_weight  |
| ۰   | DakotaNPV_10_des0054 | 4 110.27424 | 20.596744      | 1.495703   | 0.44700172        | 2        | 1638.346   |
| J   | DakotaNPV_10_des005  | 3 110.4412  | 7 20.72187     | 1.304763   | 5 0.5874033       | 1        | 1639.5761  |
|     | DakotaNPV_10_des005  | 113.13783   | 3 20.789254    | 0.513207   | 3.7967694         |          | 1646.1217  |
| a   | DakotaNPV_10_des005  | 1 113.22312 | 7 20.778268    | 0.504492   | 3.9290697         |          | 1646.2419  |
|     | DakotaNPV_10_des005  | 106.0116    | 7 📃 22.213858  | 0.6568224  | 49 2.3179495      |          | 1639.659   |
|     | DakotaNPV_10_des004  | 9 106.01167 | 7 📃 22.304437  | 0.545639   | 3.3588388         |          | 1640.298   |
| E   | DakotaNPV_10_des004  | 8 106.01167 | 7 22.386837    | 0.4485333  | 4.9706188         |          | 1640.8725  |
| _   | DakotaNPV_10_des004  | 106.0116    | 7 📃 22.4447    | 0.385739   | 6.7206718         |          | 1641.2723  |
| ••• | DakotaNPV_10_des004  | 6 106.01167 | 7 22.494629    | 0.3252004  | 9.4557878         |          | 1641.6154  |
|     | DakotaNPV_10_des004  | 106.0423    | 21.926984      | 0.984986   | 1.0307161         |          | 1637.6574  |
| 4   | DakotaNPV_10_des004  | 4 106.0423  | 21.985946      | 0.916158   | 1.1914044         |          | 1638.0818  |
|     | DakotaNPV_10_des004  | 106.42669   | 22.101672      | 0.685226   | 2.1297621         |          | 1639.6683  |

| G | eneral                                  |     |                 |          |     |       |        |    |        |     |
|---|-----------------------------------------|-----|-----------------|----------|-----|-------|--------|----|--------|-----|
| N | lethod                                  |     | Global C        | Optimiza | tio | n     |        | *  |        | 1   |
| M | lax. Evaluations                        |     | 50              |          |     |       |        |    |        | ] ( |
| İ | nitial Population Siz                   | e [ | 10              |          |     |       |        |    | ×      | ] ( |
| U | se Result Pool for<br>nitial Population |     |                 |          |     |       |        |    |        |     |
| N | lax. Generations                        | [   | 10              |          |     |       |        |    | A<br>W | 1   |
| H | TTP Monitoring                          |     |                 |          |     |       |        |    |        |     |
| D | esign Pre/Post                          | pro | cessing         | ,        |     |       |        |    |        |     |
| s | creenshots                              |     |                 |          |     |       | Z      | +  | 0      | (   |
| R | un Pre/Postpro                          | ce  | ssing           |          |     |       |        |    |        |     |
| c | ustom Attribute                         | •   | -               |          |     |       |        |    |        |     |
| D | esion Variables                         |     |                 |          |     |       |        |    |        |     |
| - | Design Variabl                          | le  | Lower           | Value    | 1   | Joper | Activ  | re |        |     |
| 1 | LOA                                     | *   | 105             | 121      |     | 135   | ×      |    | 0      |     |
| 2 | Bmax                                    | ÷   | 18              | 19.2     |     | 24    | ×      |    | 0      |     |
| 3 |                                         | *   |                 |          |     |       |        |    |        |     |
| E | valuations                              |     |                 |          |     |       |        |    |        |     |
|   | Eva                                     | lua | tion            |          |     | Obje  | ective |    |        |     |
| 1 | NPV_Optimal                             |     |                 |          | *   | ×     |        | ¢  |        |     |
| 2 | NPV_ME                                  |     |                 |          |     |       |        | 0  |        |     |
| 3 | CAPEXtotal                              |     |                 |          | •   |       |        | 0  |        |     |
| 4 | opex_total_year                         |     |                 |          |     | *     |        |    | 0      |     |
| 5 | total_weight                            |     |                 |          |     |       |        |    | 0      |     |
| 6 | Total_Resistance                        |     |                 |          |     |       |        | 0  |        |     |
| 7 |                                         |     |                 |          |     |       |        |    |        |     |
| c | onstraints                              |     |                 |          |     |       |        |    |        |     |
|   |                                         | ÷   | C               | onsider  | ed  |       |        |    |        |     |
|   | Constrain                               |     | CarsOver150 - 🗶 |          |     |       |        |    |        |     |
| 1 | Constrain<br>CarsOver 150               |     | - ×             |          |     | 0     |        |    |        |     |

O

DakotaNPV

**ELOMATIC** 



### CAESES - CADMATIC To Future







# **ELONATIC** CONSULTING & ENGINEERING