

CAESES User Conference 2022

Gate Rudder Optimization for a Better Energy Saving Propulsion System

The EC-H2020 - GATERS Project

The University of Strathclyde Dept of Naval, Ocean & Marine Eng.

Content

What is the Gate Rudder ?

How does the GR work?

Why GR ?

What is the GR's limit ?

Q & A

A brief history of Gate Rudder System (GRS) Gate Rudder

2011

4

GRS had its origin in "**Frame Rudder**", proposed and applied in full-scale by *Mr Sadamoto Kuribayashi* of Kuribayashi Steam Co Ltd, Japan in 2011.

- Frame Rudder was tested and further improved by R&D conducted in NMRI of Japan by *Dr Noriyuki* Sasaki and this led to the 1st (Japanese) patent for the early version of GRS with a single rudder stock [# JP 2014-73815 A]
- Further R&D work in Japan and the UK at the Newcastle and Strathclyde Universities, led by Dr Sasaki as the Visiting Professor resulted in the current shape of the GRS with two separate rudder stocks
 - GRS was first applied on a Japanese coastal container vessel called "**Shigenobu**" through a demonstration project conducted by a Japanese Industry Consortium and sponsored by Nippon Foundation in 2017. The 2nd (European) Patent [# EP 3103715 A1]

A brief history of Gate Rudder System (GRS) Gate Rudder

SHIGEN				
Length overall	Loa	(m)	111.40	
Length between perpendiculars	L _{BP}	(m)	106.40	
Breadth	В	(m)	17.80	
Design Draught (midship)	Т	(m)	5.24	
Displacement	Δ	(ton)	4794	
Service Speed	Vs	knots	15.5	Imoto' Lines
Rudder			GRS	o Bridge Valley NarineTraffic.com

SAKURA			
Length overall	Loa	(m)	111.4
Length between perpendiculars	L _{BP}	(m)	106.4
Breadth	В	(m)	17.8
Draught (midship)	Т	(m)	5.24
Displacement	Δ	(ton)	4794
Service Speed	V_{S}	knots	15.5
Rudder			CR

How does the Gate Rudder work?

CRS

Energy Saving

Manoeuvrability

Comparison of time history yawing motions recorded during the 2020 joint sea trials with *SAKURA (CRS*) and *SHIGENOBU (GRS)* containerships

Sea conditions: Wind speed: 12-24 knots Wave height: 1.5 – 2.0m (SS 4) Direction 250-270⁰ Period: 30 sec

Rolling motion recorded on inclinometer:

SAKURA \rightarrow 3-5⁰ SHIGENBOU \rightarrow 1-3⁰

Underwater Radiated Noise

Comparative Underwater Radiated Noise (URN) levels of *Sakura (CRS)* and Shigenobu (GRS) from trials

What is the Gate Rudder's limit?

Target Ship MV ERGE

P			MV Erge		
Parameter	Symbol	Units	Ballast Load	Design Load	Full Load
Length overall	L _{OA}	(m)		89.95	
Length between perpendiculars	L _{BP}	(m)		84.95	
Breadth	В	(m)		15.4	
Draught (midship)	Т	(m)	3.3	5.6	6.45
Draught (AP)	T _A	(m)	3.8	5.6	6.45
Draught (FP)	T _F	(m)	2.8	5.6	6.45
Displacement	Δ	(ton)	3607	6339	7241
Block coefficient	C _B		0.818	0.827	0.84
Prismatic coefficient	С _Р		0.823	0.829	0.843
Midship area coefficient	C _M		0.994	0.997	0.997
Waterplane area coefficient	C _{WP}		0.854	0.916	0.944
Longitudinal centre of buoyancy	LCB	(m) (+ fwd)	46.866	45.85	43.025
Longitudinal centre of floatation	LCF	(m) (+ fwd)	46.246	39.748	39.863
Longitudinal centre of gravity	LCG	(m) (+ fwd)	46.903	45.91	43.036
Verticle centre of gravity	VCG	(m)	3.23	5.4	6.095
Speed	Vs	knots		12	

Solver Detail - V&V Study of JCV

Solver Detail

		EFD	SM	Diff (%)	VD	Diff (%)
V _{Model}	m/s	2.333	2.333	-	2.333	-
FD	Ν	51.64	51.28	- 0.7 %	49.24	-
FX _{Port}	Ν	-1.7	-1.1	-	0.8	-
FX _{Strb}	Ν	-0.4	-0.6	-	1.2	-
FX _{Total}	Ν	-2.1	-1.7	19.5 %	-2.1	0.6 %
Thrust	Ν	161.48	159.39	- 1.3 %	162.10	0.4 %
Torque	N.M	7.15	7.24	1.2 %	7.22	1.1 %
N _{Prop}	Rps	10.96	10.80	2.7 %	10.90	- 0.5 %
Power	W	492.18	486.48	-1.2 %	494.84	0.5 %

SM		F _{Port} (N)		F _{Starboard} (N)						
Test	Total	Shear	Pressure	Total	Shear	Pressure				
1st Part	1.024	-0.997	2.020	1.197	-0.975	2.172				
2nd Part	0.235	-0.454	0.689	0.278	-0.457	0.734				
3th Part	-1.399	-0.131	-1.268	-1.260	-0.130	-1.129				
Shaft	-0.911	-0.044	-0.867	-0.853	-0.042	-0.811				
Total	-1.051	-1.625	0.574	-0.637	-1.604	0.966				

VD		F _{Port} (N)		F _{starboard} (N)							
Test	Total	Shear	Pressure	Total	Shear	Pressure					
1st Part	1.094	-1.122	2.216	1.000	-1.106	2.106					
2nd Part	0.201	-0.483	0.685	0.099	-0.484	0.583					
3th Part	-1.396	-0.153	-1.243	-1.476	-0.154	-1.322					
Shaft	-0.712	-0.044	-0.667	-0.790	-0.046	-0.744					
Total	-0.812	-1.802	0.990	-1.168	-1.791	0.623					
(-) : Resistar	j 📎	IFK2									

(+): Thrust

14

Solver Detail - Full-Scale MV ERGE

The surface with dashed lines represents the cutting plane

 * Standard CFD analysis: A transient simulation of a full-scale propulsion analysis with VD approach by including 2DOF motions at loaded condition.
** The Workstation: 2 X 10 Core Intel Processer (@ 3.6 GHz), 128 GB Ram 15

Case		01	02	03	04
Fluid Domain		А	В	В	С
Notes	 (Full Model with VD (Thrust Oriented)	Double Model (N Oriented, same with '01'	Double Model	Cut Double Model (Thrust Oriented)
Solution		Transient	Steady-State		Velocity in Body-ReferenceFrame: Magnitude (m/s) 3 4.68 6.35
Runtime*	[H]	~72	~6		
Cell Count		1.54E+07	1.19E+07	00	
Cell Count Ratio		1.00	0.78		
Speed	[knts]	12 (uniform)	12 (uniform)		
R (Included Parts to CFD)	[N]	185082	134146		
R (Total)	[N]	185082	185082		
TX _{GRS, P}	[N]	5715.8	6442.4		
TX _{GRS, S}	[N]	5750.4	6465.3		
FX _{GRS, Total}	[N]	11466.2	12907.7	L.	
SFX _{GRS, Total}	[%]	-	12.6%	10.270	1.570
FY _{GRS, P}	[N]	54515.7	55062.5	54656.3	54252.3
FY _{GRS, S}	[N]	54020.6	54486.5	54089.1	53875.1
r Propeller	[N]	185160	189006	184972	184173
a	[N.m]	99988	101605	99557	99186
N	[rpm]	152.42	152.42	151.20	151.08
J	[-]	0.624	0.616	0.618	0.619
PD	[kW]	1595.9	1621.7	1576.4	1569.2
SP.	[%]		1.6%	-1.2%	-1.7%

ς

Parametric Model

 $\boldsymbol{\delta}$: Rudder angle

" +" sign represents the toe out direction

The first Design of Experiment (DoE) is realized for the vertical section (1st Part) of MV ERGE Gate Rudder Blade. The 2nd and 3rd part of the GR Blade is not the content of this study.

1st Part 2nd Part 3th Part

DX : Rudder translation in X dir.

"-" sign represents of the stern direction of the ship

"-" sign represents toe-in direction

CR : Chord ratio

As the rudder projected area is kept constant for each Design Point (DP) this parameter also affects the span length. This means as the chord length ratio change at the tip the aspect ratio of the rudder changes implicitly.

Solver Connection

DoE Results

Rudder parameters;

- FX _{GRS Total}; Total thrust on both rudders
- FY; Side forces on each propeller separately

Propeller parameters;

- T_{Propeller}; Thrust on the propeller
- Q ; Torque on the propeller
- N ; Propeller rotation speed
- J; Propeller advance speed
- P_D ; Delivered power

Hydrodynamic parameters;

- η_H , η_R , η_0 , η_D ; Hull, relative-rotative, openwater and propulsion efficiencies
- ω ; wake fraction
- t; Thrust deduction

<u>GI%IIFKZ</u>

Not: GIF videos only play in presentation mode

Pressure Distribution on the Gate Rudder on GRS

DoE Results – Design Point Sampling

Flow Separation

Shear Stresses & Stream Lines

DoE Results – Geometric Parameters vs P_D

DoE Results – Geometric Parameters vs T_{GRS}

FX _{GRS Total} (+) : Thrust (-) : Resistance

DoE Results – FX_{GRS} vs Output Parameters

DoE Results – Best Results

	Design P.	δ [deg]	CR	DX [m]	TS [deg]	T _{GRS} [kN]	T _{Prop} [kN]	Q [kN.m]	N [RPM]	P _D [kW]	δ₽₀ [%]	ηн	η _R	ηο	ηв	ηD	J	ω	t	FY _{Prt} [kN]	FY _{Strb} [kN]
	Base Design	0	-	0	4.0	11,47	185.2	100.0	152.4	1595.9	-	0.914	0.992	0.678	0.673	0.605	0.624	0.076	0.155	54 5	54.0
	DP 20	5.6	0.74	-0.07	6.3	4.81	183.8	98.1	147.8	1518.6	-4.8%	0.980	0.988	0.668	0.659	0.636	0.604	0.132	0.149	22.2	21.0
	DP 62	5.4	0.68	0.05	5.4	5.91	183.2	97.9	148.2	1519.8	-4.8%	0.976	0.988	0.669	0.662	0.635	0.607	0.126	0.146	24.4	24.1
	DP 64	5.3	0.71	0.10	2.4	5.01	183.2	98.0	148.2	1519.9	-4.8%	0.976	0.988	0.669	0.661	0.635	0.607	0.126	0.147	21.0	19.7
	DP 44	5.1	0.73	0.13	4.1	6.97	182.5	97.7	148.5	1520.1	-4.7%	0.973	0.989	0.671	0.664	0.635	0.610	0.119	0.143	26.7	25.7
	DP 82	5.0	0.70	0.09	3.2	6.04	183.1	97.9	148.3	1520.3	-4.7%	0.975	0.988	0.670	0.662	0.635	0.608	0.124	0.146	23.9	23.5
	DP 51	4.7	0.71	-0.20	6.9	5.08	184.1	98.2	147.8	1520.5	-4.7%	0.980	0.987	0.667	0.659	0.635	0.603	0.133	0.151	27.7	26.2
PD	DP 6	4.5	0.69	-0.05	7.0	6.94	182.9	97.9	148.4	1521.1	-4.7%	0.974	0.989	0.670	0.663	0.635	0.608	0.122	0.145	31.9	30.7
	DP 92	4.2	0.73	-0.02	5.7	7.60	182.7	97.9	148.5	1522.0	-4.6%	0.972	0.989	0.671	0.664	0.634	0.610	0.120	0.144	31.9	31.1
	DP 73	4.6	0.74	-0.14	1.9	3.26	184.7	98.4	147.7	1522.3	-4.6%	0.981	0.987	0.666	0.657	0.634	0.601	0.137	0.153	19.2	17.8
	DP 37	5.8	0.72	-0.18	7.6	3.71	184.8	98.5	147.7	1522.8	-4.6%	0.981	0.987	0.666	0.657	0.634	0.601	0.137	0.154	22.7	21.1
	DP 26	3.4	0.70	0.11	0.8	7.61	182.6	97.8	148.7	1523.9	-4.5%	0.970	0.989	0.671	0.664	0.633	0.611	0.117	0.144	29.3	28.7
	DP 8	3.8	0.72	0.06	1.5	6.89	183.1	98.0	148.5	1523.9	-4.5%	0.972	0.989	0.670	0.663	0.633	0.609	0.121	0.146	27.5	26.5
	DP 15	4.1	0.69	-0.14	3.3	4.96	184.5	98.4	148.0	1524.9	-4.4%	0.977	0.987	0.667	0.659	0.633	0.603	0.133	0.152	24.4	23.7
	DP 48	3.2	0.71	0.01	3.9	8.74	182.4	97.8	148.9	1525.1	-4.4%	0.968	0.990	0.672	0.665	0.633	0.612	0.114	0.143	35.5	34.6
	DP 34	4.3	0.70	-0.11	2.6	4.62	184.6	98.5	147.9	1525.2	-4.4%	0.977	0.987	0.667	0.659	0.633	0.603	0.133	0.153	22.8	22.1
	DP 78	3.1	0.69	-0.07	4.9	8.32	182.8	97.9	148.7	1525.6	-4.4%	0.969	0.989	0.671	0.664	0.633	0.610	0.118	0.145	36.2	35.2
	DP 36	2.8	0.74	-0.04	1.6	7.58	183.1	98.0	148.6	1525.9	-4.4%	0.970	0.989	0.671	0.663	0.633	0.609	0.120	0.146	31.7	31.0
	DP 1	3.0	0.73	-0.26	2.0	4.83	185.0	98.6	147.9	1527.7	-4.3%	0.977	0.987	0.666	0.658	0.632	0.602	0.135	0.155	26.7	25.4
	DP 54	1.7	0.69	-0.06	0.9	8.72	182.9	98.0	148.9	1528.6	-4.2%	0.966	0.990	0.672	0.665	0.631	0.611	0.115	0.145	36.9	36.0
	DP 57	3.9	0.73	-0.30	0.4	1.25	186.6	99.0	147.5	1529.4	-4.2%	0.981	0.987	0.663	0.655	0.631	0.596	0.146	0.162	16.6	14.8
	DP 39	3.6	0.69	-0.36	1.1	1.65	186.7	99.1	147.4	1529.7	-4.1%	0.981	0.988	0.663	0.655	0.631	0.596	0.146	0.163	19.0	17.5
	DP TT	5.3	0.70	-0.30	4.5	1.47	186.8	99.1	147.4	1529.9	-4.1%	0.981	0.988	0.663	0.654	0.631	0.595	0.147	0.163	16.9	15.4
	DP 21	2.6	0.72	-0.21	0.3	5.07	185.0	98.7	148.1	1530.1	-4.1%	0.975	0.987	0.667	0.658	0.631	0.603	0.133	0.155	26.4	25.3
	DP 85	3.5	0.72	-0.26	6.2	5.83	184.9	98.6	148.1	1530.1	-4.1%	0.974	0.987	0.667	0.659	0.631	0.603	0.131	0.154	31.5	30.3
	DP 29	4.9	0.71	-0.38	5.8	1.54	186.9	99.1	147.4	1530.2	-4.1%	0.981	0.988	0.663	0.654	0.631	0.595	0.147	0.163	20.2	18.3
		3.8	0.70	-0.39	7.4	4.04	185.9	99.0	147.8	1531.9	-4.0%	0.977	0.986	0.665	0.656	0.630	0.599	0.139	0.159	30.1	28.4
		2.1	0.72	-0.29	2.1	6.05	185.0	98.7	148.3	1532.7	-4.0%	0.972	0.988	0.668	0.659	0.630	0.604	0.130	0.155	32.4	31.3
	DP 65	2.3	0.73	-0.32	4.4	6.35	185.0	98.8	148.3	1533.5	-3.9%	0.971	0.987	0.668	0.659	0.629	0.604	0.130	0.155	34.8	33.6

Upper bound limitation with +10% of the design with min PD D

GRS - **BD**

GRS - DP20

Results – Base D. vs DP20 Base Design

FX _{GRS Total} (+) : Thrust (-) : Resistance

• The dominant parameter is the rudder angle. Further improvement could gain via choosing optimum rudder tip skewness to rudder angle and axial location relative to propeller

• The design objective should not be to maximize GR's thrust, rudder propeller interactin is the key

• More than 5% energy efficiency could be reachable with an optimum Gate Rudder design. Even this number can be increase more than 1.5% with a new propeller design.

Design P.	D [m]	T _{GRS} [kN]	T _{Prop} [kN]	Q [kN.m]	N [RPM]	P₀ [kW]	<mark>δΡ</mark> ₀ [%]	FY _{Prt} [kN]	FY _{Strb} [kN]
Base Design	3.60	11.47	185.2	100.0	152.4	1595.9		54.5	54.0
DP 20 Erge Prop	3.60	4.81	183.8	98.1	147.8	1518.6	-4.8%	22.2	21.0
DP 20 New Prop	3.60	4.79	183.8	98.5	145.0	1495.5	-6.3%	22.1	21.1

Questions

Appendix – Progress on GATERS Project

Appendix – Progress on GATERS Project

WP 1 -Activities

Types of tests conducted were:

R&P (ITU, HSVA, CNR, UoS) Seakeeping (CNR, ITU, UoS) SPIV flow meas' (CNR, UNEW) Cavitation (CNR, ITU) Underwater Radiated Noise (CNR) Manoeuvring (ITU & CNR) Quasi-static Rudder loads (ITU, UoS

Appendix – GRS Applications (so far)

	SHIGENOBU (1 st Application, 2017)	KOHSIN MARU (2 nd Application, 2020)	SHINMON MARU (3 rd Application, 2020)	NOGAMI (4th Application, 2022)
Type of ship	Container (400 TEU)	General cargo (509 GT)	General Cargo (499 GT)	Container (550 TEU)
Lpp	101.9	69	72	136.25
В	17.8	12	12	21
т	5.24	4.11	4.13	6
C _B	0.67	0.70	0.70	
Design Vs	14.5	14.5 13		16.5
Fn (Lpp)	0.2436	0.267	0.267	0.23
L/B	5.72	5.75	5.75	6.5
Stern	Stern bulb	Stern bulb	V shape	Stern bulb
Imoto Lin	nes of Japan Imoto Lin Ilgenobu	NOBU KOHSIN MARU	林門丸 Kuribayashi Steam Co SHINMON MARU	Imoto lines

<u>3 more ships are</u> <u>in order in Japan</u> <u>for</u> <u>2023-24:</u>

- 20K DWT Bulker (2023)
- Training ship (2024)
- Ro-Ro vessel (2024)

