

FRIENDSHIP SYSTEMS

Optimization of an Additively Manufactured Inverter Cooling Plate for an Electric Vehicle

<u>Giuseppe Cicalese, PhD</u> R&D CFD Ceyhan Erdem Friendship Systems

R&D CFD in a nutshell

R&D CFD is a former Spin-Off Company of UNIMORE

- ✓ born in July 2012
- ✓ 7 CFD engineers + 5 high level CFD Specialists
- ✓ 500+ core HPC systems
- 4 funded PhD positions in 5 years
- engineering services for some of the most renowned automotive, food&beverage, healthcare, fluid-power companies

The application

MMR HYBRID F-SAE CAR: THE COOLING OF POWER ELECTRONICS

- MMR Hybrid is the team of University of Modena and Reggio Emilia participating in Formula SAE Hybrid
- The inverter devoted to control electrical power fluxes was originally intended to be cooled by air
- To increase its performance, a cold plate fed with water is purposely devepoled

The application

MMR HYBRID F-SAE CAR: THE COOLING OF POWER ELECTRONICS

- The original cold plate was already enhanced through the testing of different layouts
- Thanks to additive manufacturing the design costraints are very limited (mainly related to minimum thickness of the metal and wall inclinations)
- Inlet and outlet locations are fixed due to the layout of the components

The application

The role of thermal management

- Power electronics performance depend on the thermal management of the components
- Max junction temperature for transistors: inbetween 125 °C and 150 °C
- The base temperature of the inverter must not exceed 75 °C to avoid a huge reduction of the current

1. From unsteady to steady framework

• A steady state CHT CFD model is generated to speed up investigations → neglection of thermal inertia It was verified on single cases that the improvements emerge in a steady state framework as well

- 3 different materials
- Contact resistances
- Heat can be removed only by the coolant

2. Creation of a parametric model

STAR-CCM+^{*} for the execution of CFD simulations

2. Creation of parametric models

Centerline parameters affect the way the cold plate surrounds the bolt seat of the inverter

9

centerline2_dev2

2. Creation of parametric models

Inlet_AR: affects the transition from inlet to channels

10

inlet_dev_length

inlet_dev_factor

© 2022 R&D CFD SRL – Restricted

2. Creation of parametric models

11

© 2022 R&D CFD SRL – Restricted

3. Monitored quantities

- Pressure Drop across the coldplate
- Mass flow through each pipe

Surface Average and Max temperature of inverter base

• Max temperature of transistors

DOE

OPTIMIZATION

A «Sobol» algorithm with 100 designs is run to extract Pearson's Correlation Coefficients

13

	Pressure Drop	MFR Channel 1	MFR Channel 2	MFR Channel 3	НТС	MAX Temperature Base	MAX Temperature Transistors	AVG Temperature Base
centerline1_dev1	-0.39	-0.28	-0.37	0.58	0.31	-0.05	-0.06	0.39
centerline1_dev2	-0.43	-0.23	-0.41	0.55	0.29	0.07	0.11	0.48
centerline2_dev1	-0.57	0.59	-0.59	-0.23	0.17	0.13	0.20	0.57
centerline2_dev2	-0.49	0.67	-0.49	-0.39	0.08	0.95	0.83	0.48
inlet_AR	0.19	-0.03	0.10	-0.05	-0.02	-0.14	-0.07	-0.18
inlet_devFactor	0.07	0.03	0.07	-0.09	-0.09	0.03	0.04	-0.03
inlet_devLength_par	-0.09	0.07	0.00	-0.08	0.04	0.01	-0.01	0.18
junction_h_SF	0.08	0.01	0.06	-0.06	-0.07	0.04	0.05	0.05
Tongue_SF	0.00	0.08	0.02	-0.10	0.12	-0.01	-0.05	-0.03
Tongue_vLoc_par	0.08	-0.23	0.18	0.12	-0.18	-0.12	-0.09	-0.08
junction_gap	0.20	0.14	0.13	-0.26	-0.08	0.18	0.21	-0.03

The monitored quantities are mainly affected by channel paths more than other parameters

DOE

	Pressure Drop	MFR Channel 1	MFR Channel 2	MFR Channel 3	НГС	MAX Temperature Base	MAX Temperature Transistors	AVG Temperature Base	1 0.995 0.99
Pressure Drop	1.00	-0.44	0.98	-0.22	-0.40	-0.58	-0.58	-0.94	
MFR Channel 1	-0.44	1.00	-0.48	-0.77	-0.04	0.69	0.66	0.41	0.005
MFR Channel 2	0.98	-0.48	1.00	-0.20	-0.38	-0.59	-0.60	-0.92	0.985
MFR Channel 3	-0.22	-0.77	-0.20	1.00	0.33	-0.34	-0.31	0.21	
нтс	-0.40	-0.04	-0.38	0.33	1.00	0.04	-0.03	0.39	0.98
MAX Temperature Base	-0.58	0.69	-0.59	-0.34	0.04	1.00	0.96	0.59	
MAX Temperature Transistors	-0.58	0.66	-0.60	-0.31	-0.03	0.96	1.00	0.59	0.075
AVG Temperature Base	-0.94	0.41	-0.92	0.21	0.39	0.59	0.59	1.00	0.975

Main outcomes:

- Pressure drop \uparrow Temperatures \downarrow
- Pressure drop \uparrow MFR in channel 2 \uparrow
- All the temperatures all very well correlated ightarrow just one can be picked to be minimized

DOE

OPTIMIZATIO

Simcenter STAR-CCM+

OPTIMIZATION

Response surface optimization

Two objectives: minimization of pressure drop and AVG Temperature base

AVG Temperature base [°C] Pressure drop reduction by more than **10%** in the most permeable configuration. Hence, in the actual operations, the flow rate through the cold plate will increase 42.6 with a further reduction of temperatures. 42.4 42.2 42 The design with the minimum AVG 41.8 temperature has the same temperature of baseline design with a reduction of 41.636 37 38 39 pressure drop by more than 5%. Pressure Drop [mbar] Increased MFR is expected Optimized Daseline

16

© 2022 R&D CFD SRL – Restricted

41

baseline

43

OPTIMIZATION

Response surface optimization

• The same rationale is valid looking at the best designs for MAX Temperature of base and transistors.

- Was the optimization process successful?
 - Yes, it was! The pressure drop reduction is the main outcome of the activity, which in turn leads to an increase of coolant flow rate and to a further temperature reduction
- Why the temperature reduction was pretty limited?
 - HTC x Area variation is limited, hence the heat removal capability of the coolant is unaltered
- Are the shown designs feasible?
 - Yes, they are! The cold plate will be engineered and pinted to be tested on the Formula SAE car
- Are there any other options?
 - Yes, for sure! These results are of course influenced by the rationale of the model generation. Other kind of paths, pipe shapes, etc. can be tested: e.g., we tried to introduce parametric grooves on the pipe surface, but the increased pressure drop did not justify the minimal temperature decrease.

Thank you for your attention!

19

Giuseppe Cicalese, PhD giuseppe.cicalese@red-cfd.it

R&D CFD SRL Via Tacito, 59 Modena - ITALY Acknowledgements

Thanks to MMR Hybrid Team for providing information to perform this activity and to Ceyhan Erdem for the parametric model generation

