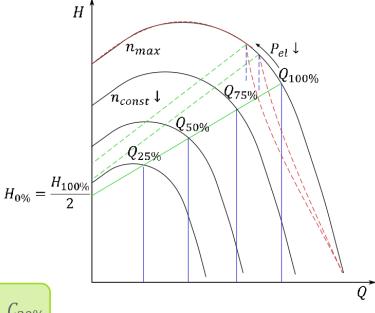
High-Efficiency Circulator Pump Design

Creating an Innovative Workflow

 Starting from January 1, 2013, circulators must comply with European regulation 641/2009, part of the ecodesign policy of the European Union

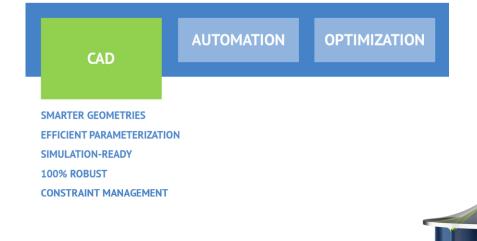
exemplary picture

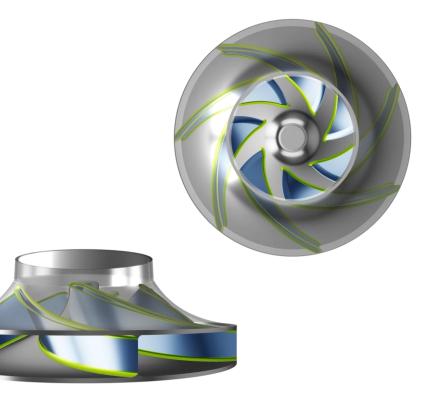

- Starting from January 1, 2013, circulators must comply with European regulation 641/2009, part of the ecodesign policy of the European Union
- Minimum value of Energy Efficiency Index (EEI) is prescribed
 - EEI also takes into account part load operating power consumption and motor characteristics

exemplary picture

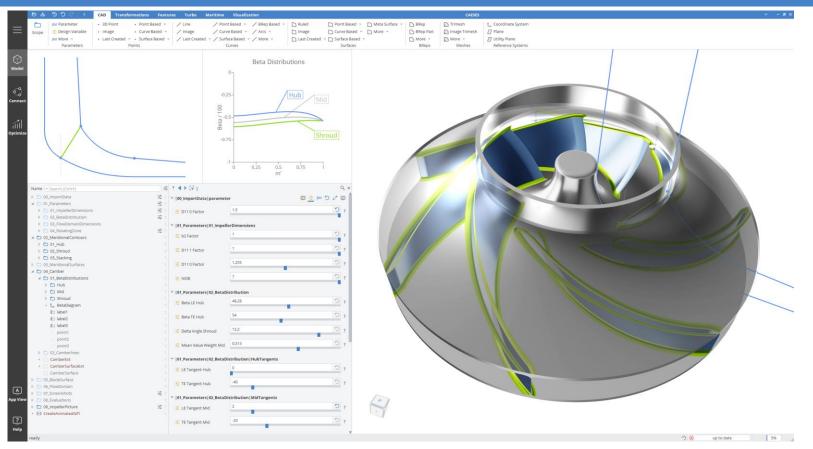
- Starting from January 1, 2013, circulators must comply with European regulation 641/2009, part of the ecodesign policy of the European Union
- Minimum value of Energy Efficiency Index (EEI) is prescribed
 - EEI also takes into account part load operating power consumption and motor characteristics
 - Calculated by comparing the average (measured) power consumption of the circulator across a load profile against a predefined reference power input

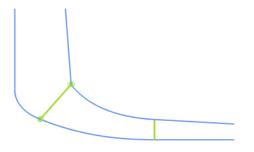
$$EEI = \frac{0.06P_{L,100\%} + 0.15P_{L,75\%} + 0.35P_{L,50\%} + 0.44P_{L,25\%}}{P_{ref}} C_{20\%}$$

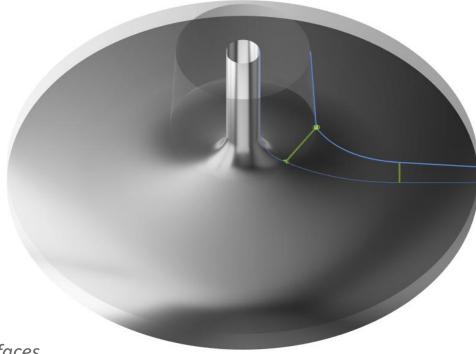



- Pump selection depends on system components which are varying until late in product development
- This means, pump selection has to be done *fast*, at the end of the product development process
- Aim: Development of the hydraulic part of a tool chain to minimize the EEI of a pump
- → Idea: Pump selection via surrogate model generated by impeller CFD simulations

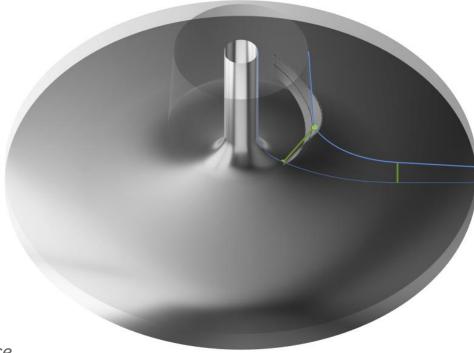
Modeling of a Connection to SimScale to allow computation Computation DoE of the impeller Model(s) Optimization with surrogate

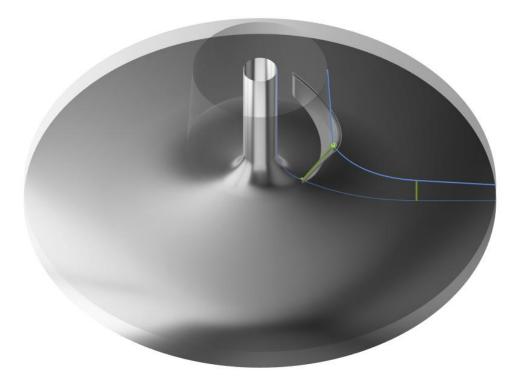

Project Steps | CAD Modeling and Variation

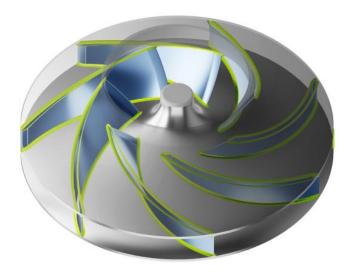


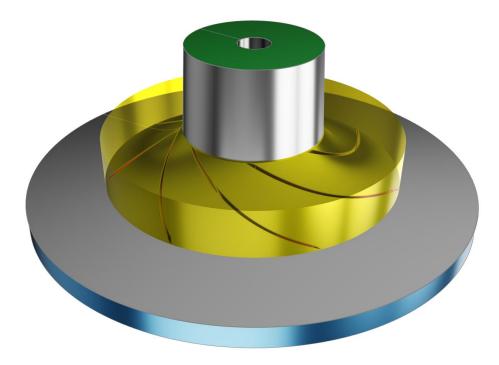


Project Steps | CAD Modeling and Variation

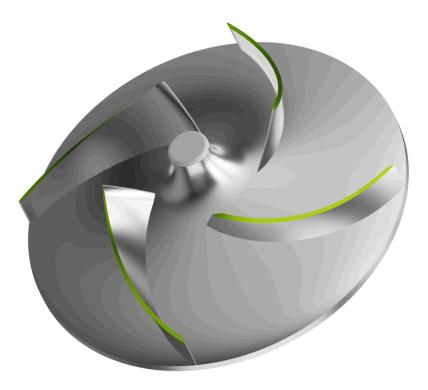



1. *Meridional contours*

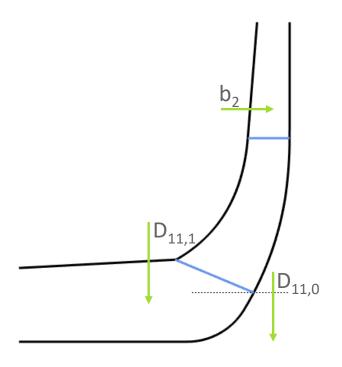

2. *Hub and shroud surfaces*


3. Mean camber surface

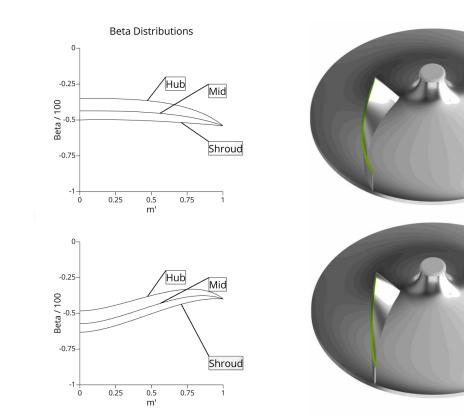
4. Blade solid



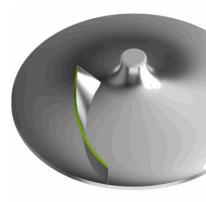
5. Finalizing

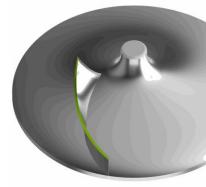


6. Flow domain


Number of blades

- Number of blades
- Meridional contours:
 - 3 parameters


- Number of blades
- Meridional contours:
 - 3 parameters
- Blade angle distributions:
 - 2 parameters for LE and TE blade angle



- Number of blades
- Meridional contours:
 - 3 parameters
- Blade angle distributions:
 - 2 parameters for LE and TE blade angle
 - 2 parameters for hub to shroud variation of LE blade angle

Beta Distributions 0. -0.25 Hub Mid Beta / 100 -0.75 Shroud -1 0.25 0.75 0.5 Ó m' 0. Hub -0.25 Mid

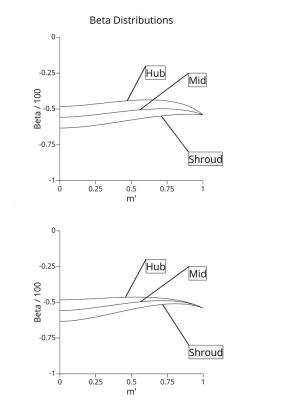
Shroud

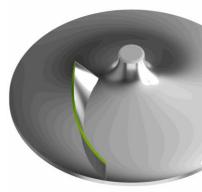
-0.75

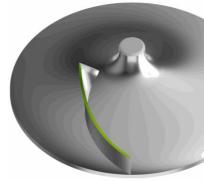
-1-

ò

0.25

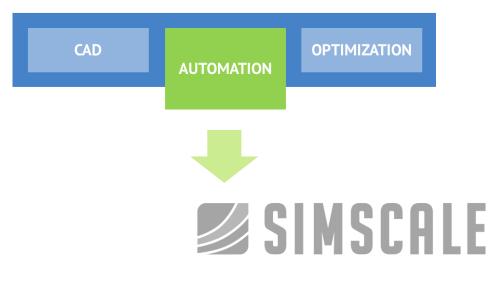

0.5

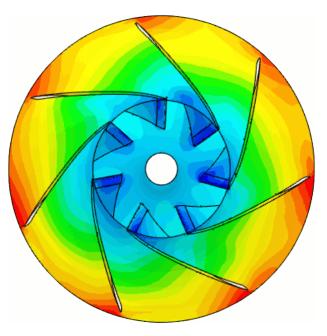

m'


0.75

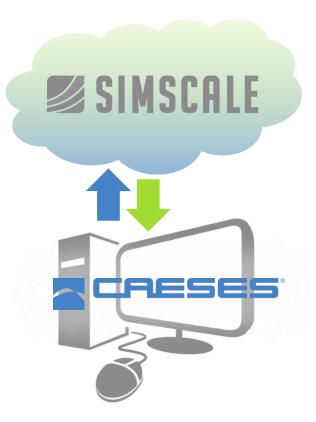
- Number of blades
- Meridional contours:
 - 3 parameters
- Blade angle distributions:
 - 2 parameters for LE and TE blade angle
 - 2 parameters for hub to shroud variation of LE blade angle
 - 6 parameters for shape control of beta functions between LE and TE

ightarrow 14 parameters in total





Project Steps | CFD Automation

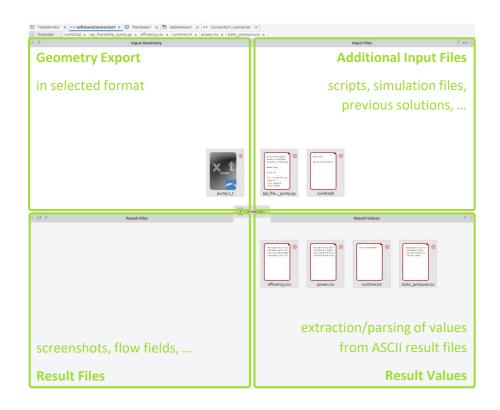


CFD Automation | CFD in the Cloud

 CAESES runs on the local workstation, while SimScale runs in the cloud

CFD Automation | CFD in the Cloud

- CAESES runs on the local workstation, while SimScale runs in the cloud
- Control of the SimScale API via a Python script
 - Import geometry to the SimScale platform
 - Set up the case (boundary conditions, mesh settings, solver settings, etc.)
 - Run computation
 - Download result files to the local workstation
- 3 flow rates are computed in parallel:
 0.7, 0.85, 1.1 x Q/Q opt

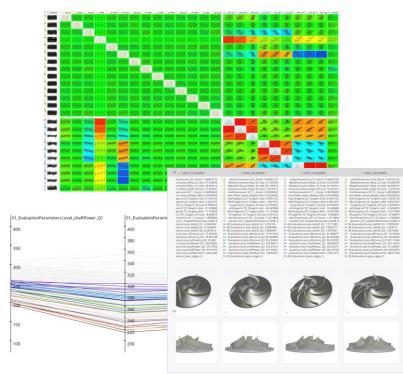

```
🕒 TaskMonitor x 🕶 softwareConnector1 x 🖨 fileViewer1 x 🛅 tableViewer1 x 🕶 Connector1_connector x
Overview runAll.bat x api_friendship_pump.py x efficiency.csv x runtime.txt x power.csv x static_pressure.csv x
Template Name api_friendship_pump.py
       #!/usr/bin/env python
       # author: Omar Abed
       W date last modifed: Aug 22nd, 2022
        ## API Setup
       import re
       from simscale_sdk import *
        import os
        import argparse
        import isodate
        import time
       immort csv
        import math
        import zipfile
        import numpy as np
        parser = argparse.ArgumentParser()
        parser.add_argument("-k", "--api_key", help="SimScale API key", required=True)
        parser.add_argument("-u", "--api_url", help="SimScale_API_URL", default="https://api.simscale.com")
        parser.add_argument("-f", "--cad_file_name", help="Name of CAD file to upload", default="pump.x_t")
       parser.add_argument("-d", "--debug", help="Debugging output on", type=bool, default=True)
       args = parser.parse_args()
    28 # API client configuration
        ap1_key = args.ap1_key
       api_key_header = "X-API-KEY"
       configuration = Configuration()
       configuration.host = args.api_url + "/v8"
       configuration and key = {
           ap1_key_header: ap1_key
       configuration.debug = args.debug
       api_client = ApiClient(configuration)
    48 # API clients
   41 project_ap1 = ProjectsAp1(ap1_client)
   42 storage_api = StorageApi(api_client)
   43 geometry import api = GeometryImportsApi(api client)
       geometry_ap1 = GeometriesAp1(an1 client)
   4.4
   45
       mesh_operation_api = MeshOperationsApi(api_client)
       simulation ap1 = SimulationsAp1(ap1 client)
       simulation run ant « SimulationRunsAnt(ant client
   50 ## Functions
   52 # Mapping single face TD
       def get_single_face_name(project_id, geometry_id, entity_name, **kwargs):
          entities = geometry_api.get_geometry_mappings(project_id, geometry_id, entities=[entity_name], **kwargs),_embedded
           entities2 = geometry_apl.get_geometry_mappings(project_id, geometry_id, values=[entity_name], **kwargs)._embedded
           if len(entities) == 1;
                return entities[0].name
           elif len(entities2) == 1:
               return entities2[0].name
           else:
               raise Exception(f"Could not find single face named (entity_name) in geometry. Found (len(entities)) and (len(entities2)) faces on both attempts.")
   63 # Mapping body ID
   64 def get_body_name(project_id, geometry_id, entity_name, **kwargs):
```

CFD Automation | Exports and Imports

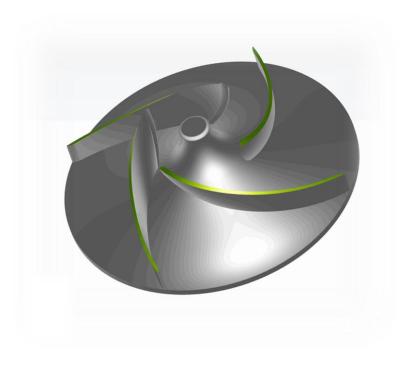
- Exports:
 - Flow domain geometry in Parasolid format
 - Python script
 - Batch script to run Python with the necessary arguments

Imports:

- CSV files for head, efficiency, and power values at all 3 flow rates
- Text file with computation runtime



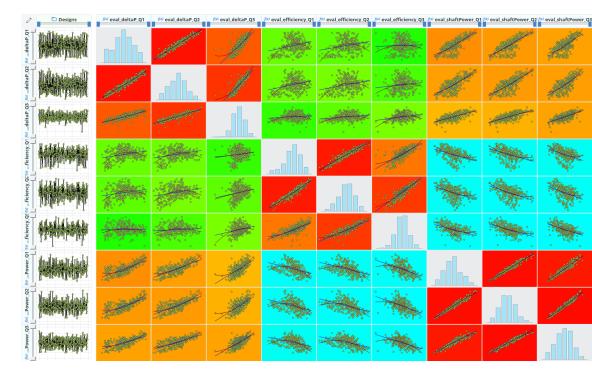
Project Steps | Optimization



DESIGN STUDIES MULTI-OBJECTIVE RUNS RESPONSE SURFACES 2D CHARTS AND CORRELATIONS POST-PROCESSING

Optimization | DoE Setup

- Sobol sequence with the 14 selected design variables
- ~300 impeller variants simulated with 3 flow rates each (~900 simulations)
- Cumulative simulation runtime: 592.6 hours (~25 days)
- Actual parallelized runtime: 42.4 hours
- Average # of simulations in parallel / parallelization factor: 14
- Computational cost: 3,084 core hours (CHs) used (~10.3 CHs per design variant)



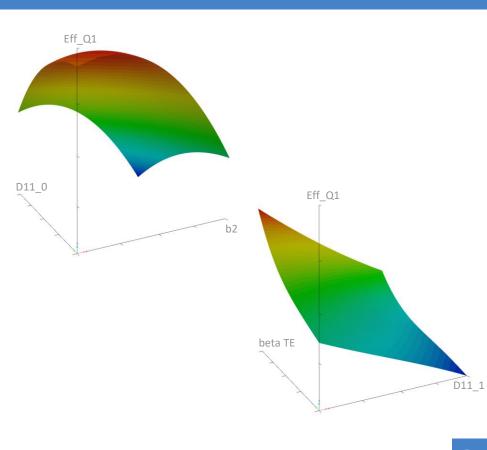
Optimization | DoE Results

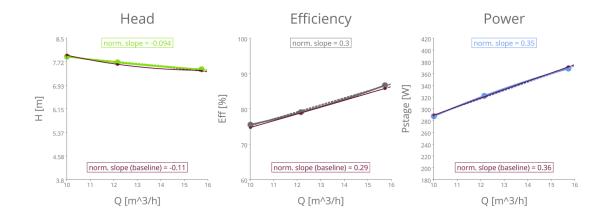
Designs	E b2_Factor	D11_1_Factor	NOB	ub 😤 Beta_TE_Hub	😤Ita_Angle_Shroud	😤alue_Weight_Mid	辈 LE_Tangent_Hub	辈 LE_Tangent_Mid	ELE_Tangent_Shroud	幸 TE_Tangent_Hub	፰ TE_Tangent_Mid	TE_Tangent_Shroud
IndeltaP_Q1				t and a second					an a			
IndeltaP_Q2							<u>446 De</u>					
WdeltaP.q3			<mark>⊢∣</mark> <mark>⊁≎₩</mark> ₩	÷	, Marin i				Référe			
ficiency of		******	+									
The second secon												
The second secon								Ni i				
M Power QI V		XX H		i i i i i i i i i i i i i i i i i i i								
D Power Q2		kiiki H	H	÷								
Do Power Q3	in the second	iiii H		÷								XARXXX
No IRuntime		X							an a			

Optimization | DoE Results

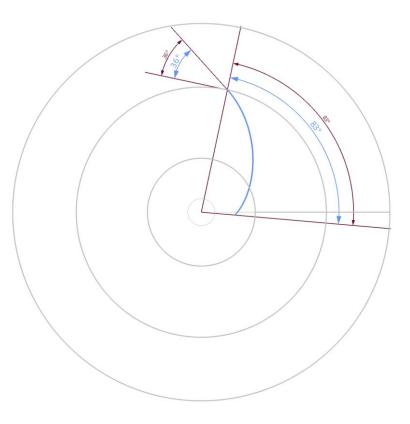
 Performance values at all 3 flow rates are well correlated in the considered range (0.7-1.1 x Q/Q_{opt})

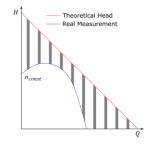
 Surrogate models created in a separate project using imported design result table from DoE


0	2	b2_Factor	≅ D11	1_0_Factor	₹ D	11_1_Factor		B	Beta_LE_Hub	😤 Be	ta_TE_Hub	🗄 Delta	Angle_Shroud	🗄 Mean_Va	alue_Weight_Mid	₹ LE_Ta	ngent_Hub	÷
sobol1_14_des0000	•	0.9	-	1.25	-	0.9	-	6	47.5	-	55	-	7.5		0.5		5	
sobol1_14_des0001		0.95	•	1.125		0.95		6	41.25		62.5	•	3.75	-	0.475		7.5	-
sobol1_14_des0003		0.875	•	1.0625		0.975	•	5	44.375		58.75	•	1.875		0.5375	•	1.25	
sobol1_14_des0004		0.975		1.3125	•	0.875		7	56.875	•	43.75		9.375		0.4875		6.25	
sobol1_14_des0005		0.925		1.1875	•	0.825		6	38.125		51.25		5.625		0.5125		8.75	
sobol1_14_des0006	н.	0.825		1.4375		0.925	1 - E	4	50.625		66.25		13.125	•	0.4625		3.75	
sobol1_14_des0008		0.9375	1 - E	1.03125	н., I	0.8125		5	55.3125		64.375	•	2.8125		0.51875		5.625	
sobol1_14_des0009		0.9875		1.40625	•	0.8625	•	5	36.5625		56.875		14.0625		0.49375		8.125	
sobol1_14_des0010		0.8875	•	1.15625		0.9625		7	49.0625	1 - C	41.875		6.5625		0.54375	-	3.125	
sobol1_14_des0011		0.8625		1.34375		0.8875		6	39.6875		68.125		8.4375		0.53125	•	1.875	
sobol1_14_des0012	-	0.9625	•	1.09375	-	0.9875	•	5	52.1875		53.125	1 C	0.9375	-	0.48125		6.875	
sobol1_14_des0013		0.9125		1.46875		0.9375	1.1	4	45.9375		45.625		12.1875	-	0.50625		9.375	н.
sobol1_14_des0014	н.	0.8125		1.21875	•	0.8375		6	58.4375		60.625	-	4.6875	•	0.45625		4.375	
sobol1_14_des0015	τ.	0.81875		1.42188		0.85625	1.5	4	46.7188		65.3125		6.09375		0.484375		5.3125	
sobol1_14_des0016		0.91875		1.17188		0.95625		6	59.2188		50.3125		13.5938		0.534375	1 - C	0.3125	
sobol1_14_des0017		0.96875		1.29688		0.90625		7	40.4688	•	42.8125	•	2.34375	•	0.459375		2.8125	
sobol1_14_des0018		0.86875	1 C	1.04688	1 C	0.80625		5	52.9688		57.8125		9.84375		0.509375		7.8125	۰.
sobol1_14_des0019		0.89375		1.48438		0.93125	•	5	37.3438		54.0625	-	4.21875		0.521875		6.5625	
sobol1_14_des0020		0.99375	-	1.23438	•	0.83125		6	49.8438		69.0625		11.7188	-	0.471875	•	1.5625	
sobol1_14_des0021		0.94375		1.35938		0.88125		6	43.5938		61.5625	1 - C	0.46875		0.546875		4.0625	
sobol1_14_des0022	۰.	0.84375		1.10938		0.98125	1.5	4	56.0938		46.5625		7.96875		0.496875		9.0625	
sobol1_14_des0023	۰.	0.83125		1.14063		0.96875		6	38.9063		55.9375		12.6563		0.490625		5.9375	
sobol1_14_des0024		0.93125		1.39063		0.86875	1.5	4	51.4063	1 - C	40.9375		5.15625		0.540625	1 de 1	0.9375	
sobol1_14_des0025		0.98125	1.1	1.01563	L	0.81875		5	45.1563		48.4375		8.90625	-	0.465625		3.4375	
sobol1_14_des0027		0.85625		1.20313	•	0.84375		7	42.0313	•	44.6875		14.5313		0.503125		7.1875	
sobol1_14_des0028		0.95625		1.45313		0.94375		5	54.5313		59.6875		7.03125	1.00	0.453125		2.1875	1
sobol1_14_des0029		0.90625	•	1.07813		0.99375	•	5	35.7813		67.1875		10.7813		0.528125		4.6875	
sobol1_14_des0030	L.	0.80625		1.32813		0.89375		6	48.2813		52.1875	•	3.28125	-	0.478125		9.6875	
sobol1_14_des0031	L.	0.809375	•	1.17969		0.940625	•	5	41.6406		58.2813		8.67188	_	0.514063		2.65625	
sobol1_14_des0032		0.909375		1.42969	•	0.840625	-	6	54.1406	•	43.2813	1 C	1.17188	-	0.464063		7.65625	
sobol1_14_des0033		0.959375	1 C	1.05469		0.890625	-	7	35.3906		50.7813		12.4219		0.539063		5.15625	
sobol1_14_des0034		0.859375		1.30469		0.990625		5	47.8906	-	65.7813	-	4.92188		0.489063	1	0.15625	-
sobol1_14_des0035		0.884375		1.24219		0.865625		5	38.5156		47.0313	-	10.5469	-	0.476563		3.90625	1


- Surrogate models created in a separate project using imported design result table from DoE
- Based on the feature *RSMtools*
 - 9 separate models for the 9 considered outputs (H, eff, P at 3 flow rates)
 - Generated models are persistently stored in files
 - Checking yielded high CoP values of 0.95 and above

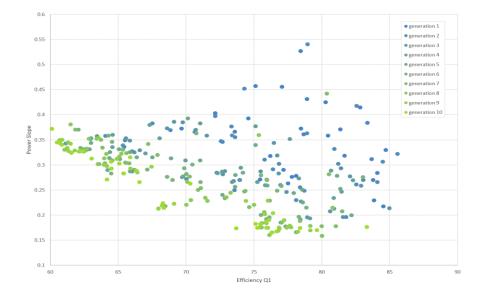
† ◀ ▶ 53	Q × RSMtools	
Efficiency_Q1		
J General		
Surrogate:	generate evaluate visualize check ?	
Select Model	"C:/Work/00_Projects/KSB/09_07_responseSurface/ Response_Surface_KSB_V3/manual_results/baseline/ generateRSM/ 01_EvaluationParameterseval_efficiency_Q1_comple te/modelKriging.sps"	
Design Variables	О??	
Results Table	DoE_Results	
Response Index	3 ?	
View	• ?	
 Visualization 		
Index U	0 2	
Index V	1 ?	
UResolution	10 • ?	
VResolution	10 • ?	
Normalized legend	<u>ج</u> ؛	
Set Custom Normalizatior Range	?	
> Display Options		

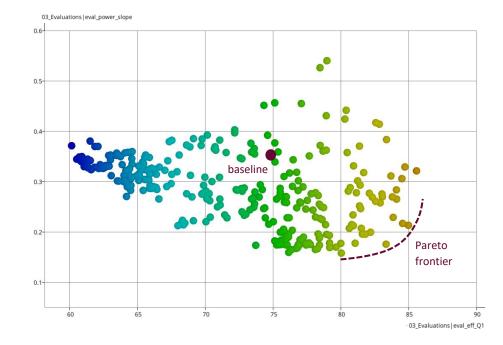

- Surrogate models created in a separate project using imported design result table from DoE
- Based on the feature *RSMtools*
 - 9 separate models for the 9 considered outputs (H, eff, P at 3 flow rates)
 - Generated models are persistently stored in files
 - Checking yielded high CoP values of 0.95 and above
 - Individual response surfaces can be visualized


- The surrogates provide values for the 9 primary output parameters
- The values are plotted in diagrams
- Slopes of the curves (from linear interpolation) are computed as derived values


- The surrogates provide values for the 9 primary output parameters
- The values are plotted in diagrams
- Slopes of the curves (from linear interpolation) are computed as derived values
- A strongly simplified geometry model (with only the hub camber line) provides the TE blade angle and the total wrap angle

- Optimizations can now be run on surrogate models
- Final goal is to simply optimize for minimal EEI, but:
 - Calculation of the EEI is done with measured curves
 - Here, pump performance is evaluated by impeller only CFD simulations at fixed rpm
 - Approximation of the measured head curves by application of different assumptions on calculated curve


 \rightarrow Still work in progress


- Testing of the surrogate model using assumptions:
 - Increase efficiency at lowest flow rate (due to stronger weighting)
 - Reduce slope of power curve (to prevent breakdown of head at higher flow rates and shifting of Q_{100%} point)
 - ightarrow Should lead to lower EEI

- NSGA run with 10 generations and 32 design per generation → 320 designs
 - ~30 min runtime (i.e., ~10 designs per minute)

- NSGA run with 10 generations and 32 design per generation → 320 designs
 - ~30 min runtime (i.e., ~10 designs per minute)
 - Several Pareto optimal designs

- NSGA run with 10 generations and 32 design per generation → 320 designs
 - ~30 min runtime (i.e., ~10 designs per minute)
 - Several Pareto optimal designs
- Selected design
 - Smaller TE blade angle
 - Larger wrap angle
 - 6 blades (baseline: 7)

- Integrated software connector to launch CAESES in batch mode and generate geometry for selected variant on demand
 - Open parametric model
 - Send design variable values via FSC script
 - Save project file
 - Export meridional contours, blade, and flow domain

Conclusions

- Using SimScale CFD analysis in the cloud allows for high degree of parallelization and rapid evaluation of a large number of impeller variants at multiple operating points
- Surrogate models provide a persistent storage for the generated database and can efficiently predict performance with a satisfactory degree of precision
- A quick optimization of the impeller geometry can be carried out using the surrogate models and custom requirements
- With these components, a first iteration of the hydraulic part of the toolchain for the minimization of the pump's EEI could be realized

Acknowledgements

- Thank you to all people who contributed to the project, especially:
 - Toni Klemm, KSB
 - Omar Abed, SimScale
 - Johannes Weber, FRIENDSHIP SYSTEMS

Thank you for your attention!

brenner@friendship-systems.com www.CAESES.com

FRIENDSHIP SYSTEMS © 2022

