

Erasmus Mundus Double Degree Master's in Advanced Mechanical Engineering Specialization in Marine & Offshore Hydrodynamics

Speeding-Up Simulation-Driven Designs for High-Speed Planing Boat

Presented by : Osama Ahmed

MSc Naval Architecture and Offshore Engineering

Specialized in Hydrodynamics and Optimization

Date: 22-September-2022

Today's Agenda

Problem Statement

- Introduction to Planing Vessels
- Model Principal Dimensions
- Parametric Modeling
 - Geometrical Features of the Model
 - Design Variables and Objective Function
- Mesh Discretization
- Numerical Modeling and Validation
- Optimization Studies
 - Design of Experiment and Exploitation
 - Data-Driven Optimization Methods
 - Response Surface Optimization

Let's Start the Boat!

Displacement Vs Planing Vessels

Displacement Vessels

https://www.passagemaker.com/cruiser-reviews/full-displacement

Works on Archimedes Principle

Froude Number < 0.1-0.7

Container Ships, Large Bulk Carrier, Ferrys and Passenger Vessels

Planing Vessels

https://mboat.eu/planing-hull/

Works on Dynamic Lift Generation

Froude Number > 1 -1.2 (Volumetric / Beam)

Pilot Boats, Naval Ships, Police Boats, Pleasure Crafts

Planing Vessels in real conditions

https://mboat.eu/planing-hull/

• Highly turbulent and Dynamic Fluid Structure Interaction Model with large DFBI Motions

Challenges to Simulate? -

Very high computational time!!

- Stationary mesh strategy encounters distortion for large dynamic motions
- Proper care is required to capture the flow dynamics near the flow boundary between two phases to avoid possible Numerical Ventilation.
- Very fine discretization and special CFD Solvers requires for accurate predictions

Principal Dimensions of the Vessel

	Full Scale	Model Scale	
Peak Length	11.058	3.364	m
Beam	3.500	1.065	m
Displacement	9.500	0.267	ton
Draft	0.611	0.186	m
LCG	4.945	1.504	m
VCG	0.700	0.213	m
Speed	27.500	15.168	Knots
Fr (Length)	1.358	1.358	
Attachment			m
Point X	5.529	1.682	111
Attachment			~
Point Z	0.611	0.186	[[]

- Scale = 3.2871
- Design Speed = 27.5 Knots for Full Scale
- Froude Number = 1.36

Geometry With Appendage

Simcenter STAR-CCM+

Propeller Disk

x z

Parametric Modeling: Geometrical Features

Hard Chine vs Soft Chine

Parametric Curves

Parametric Modeling: Geometrical Features

Deadrise Angle

Parametric Modeling: Geometrical Features

Spray Rails

- Parametric Model with 18 design variables
 - 8 for Hull
 - 10 for tunnel

Numerical Modeling : Mesh Discretization

- Dynamic Overset Grid with Adaptive Mesh Refinement
- Symmetry along y axis
- AMR for overset grid as well as Free Surface
- Target Wall y+ of around 70, with wall functions

Y X

Numerical Modeling : Mesh Discretization

Total Number of Cells Background Region: 1.37125e+06

Numerical Modeling : Mesh Discretization

Simcenter STAR-CCM+ Simcenter STAR-CCM+ Total Number of Cells Background Region: 263120 Total Number of Cells Background Region: 1.37327e+06

Overall Tank and Overset Mesh, Initial Vs Final

Initial Background Mesh

Final Background Mesh

Numerical Modeling : Physical Setup

Boundary Conditions and Forcing Zones

Simcenter STAR-CCM+

Simcenter STAR-CCM+

VOF Slip Velocity Method, to avoid Numerical Ventilation

Numerical Modeling : Physical Setup

Simcenter STAR-CCM+

Hull without Numerical Ventilation

Simcenter STAR-CCM+

Hull with Numerical Ventilation

Simulation Results : Post Processing

Solution Time 6.00147 (s)

Simulation Results : Post Processing

Position[Z] (m)

0.4

Verification : Grid Convergence Studies

x 1000

Total Number of Cells

Verification : Grid Uncertainty Quantification

- Richardson Extrapolation FOS Method
- At Design Speed of 27.5 Knots
- For Hull with Appendages
 R = √2

# of Cells	R	Heave(cm)	Pitch (Deg)	Drag (N)
1.76E+06	1	10.50	5.00	535.57
3.66E+06	1.4142	10.67	5.10	520.56
5.75E+06	2	10.68	5.14	519.27
Uncertainty_FS	%	0.310	4.647	0.753
Uncertainty_GCI	%	0.011	2.867	0.029

Verification : Convergence Histories

Validation Studies:

- At Design Speed,
 - Percentage difference in Resistance < 1 %</p>
 - Absolute difference in Pitch Angle < 0.9 deg</p>
 - Absolute difference in Heave < 1.2 cm</p>

Speeding-Up CFD Computations:

- Speeding Up CFD tasks:
 - Use of AMR Techniques with combination of Overset Mesh to refine the Mesh Locally where needed.
 - Use of Implicit Multi-Step with adaptive Time step
 - Artificially damping the motions by modifying Inertia

Speeding-Up CFD Computations:

- Speeding Up CFD tasks:
 - Ramping Up of Velocity for better and fast Solution Convergence
 - Appendages can be neglected for Design Exploration.
 - Using Coarser Grid for optimization framework.
- Simulation time decreases by a factor of around 2 for each simulation.

Simulation-Driven Design - Workflow

Automated Software Connection: Convergence Histories

23

Automated Software Connection: Convergence Histories

First Optimization Study:

Based on initial results from tank tests and validated CFD Setup

- Free Surface Representation with Old Tunnel
 - Sharp Wave Breaking
 - Cross Flow At Wake

- Smoother Flow
- Cross Flow is reduced

First Optimization Study:

	LCG (m)	XCB (m)	Resistance (N)	Trim (Deg)	Heave (cm)	Pressure Drag (N)	Shear Drag (N)
Old Tunnel	1.504	1.4681	521.52	5.09	10.06	311.68	209.84
New Tunnel	1.504	1.4681	520.62	2.98	6.96	263.38	257.24

Pressure Distributions for Old Tunnel

Pressure Distributions for New Tunnel

- Proposed LCG location , 15cm aft.
 - New LCG position at 1.354m at model scale
 - Combination of New Tunnel and LCG Shift gives around 5% of propeller thrust reduction

Optimization Framework:

- 1st optimized design, is the new baseline for optimization
- Using Automated Software Connection of CAESES and STAR-CCM+ to run it in Batch Mode.
- Propeller thrust reduction as an objective function.

Optimization Framework: 2nd Optimized Design

- 1st optimized design, is the new baseline for optimization
- Using Automated Software Connection of CAESES and STAR-CCM+ to run it in Batch Mode.
- Propeller thrust reduction as an objective function.

Design of Experiment : SOBOL

0	🗋 Designs	葉 angleLongAtTransom	茸 angleOpeningAtTip	🕂 angleTongue	茸 areaModCurvedTop	茸 asymAft	茸 asymFor	茸 lowerTransom	茸 parallelFor
f(x) Thrust_N	WwWwWn	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							
f(x)rag_Full_VD									
f(x) eval_Pitch_VD		° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °							
f(x)al_Heave_VD	apaily ps:								
f(x)ce_Ratio_VD									
f(x)que_Half_VD									
f(x)tionRate_VD									
f(x) Power_VD								00000000000000000000000000000000000000	

29

Design of Experiment : SOBOL

0	🕂 tipRelPosX	荘 relHollownessAtKeel	葉 relHollownessAtStern	🛨 rocker	\Xi deadriseAtTransom	\Xi railInnerTanFwd	🛨 railWidthAtTransom	辈ilInnerYrelAtTransom	🛨 railInnerYrelAtyN
f(x) Thrust_N									
f(x)rag_Full_VD									
f(x) eval_Pitch_VD						0 00 0 <u>20 00 48 00 20 49 48 9</u> 000 08 60 00 00 00 00 00 0 00 00 00 00 00 0 00 0		२०२२ २३२ २२२ २३२ २३४७४ २३ २३ २३ २३ २३४७४ २३ २३ २३ २३४२	
f(x)al_Heave_VD					9 • • • • • • • • • • • • • • • • • • •				
f(x)ce_Ratio_VD									
f(x)que_Half_VD			۰ ۵۵۵۶ کې ۵۶۰۵ کې ۲۹۹۰ کې ۲۹۹۰ کې ۵۶۰۵ کې ۲۹۹۰ کې ۲۹۹۰ کې	° 40,000,000,000,000 10,000,000,000,000 10,000,00					
f(x)tionRate_VD									
f(x) Power_VD				**************************************					
ime_VD	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	8 808 8,808,8 8°	^{60° 60} 60 60 60 60 60 60	లి కార్కి కారా లి ల	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	°°8,3 8°8 8°8 8,	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	8° సంసం ⁶ సిని	ಿ ಿಂಿ ಇಂ ಎಂ
cal_Ti		0°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°		And the state of t	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				· · · · · · · ·
20			6	5	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	30 00 0 000 0 000 0 000 0 000 0 000 0 000 0	00000 00000 000000 000000 000000000000	9 99 9 99 90 90 9 9 9 9 9 9 9 9 9 9 9 9	

Optimization Framework: 3rd Optimized Design

- 1st optimized design, is the new baseline for optimization
- Using Automated Software Connection of CAESES and STAR-CCM+ to run it in Batch Mode.
- Propeller thrust reduction as an objective function.

Design of Exploitation: T-search

- T-search using CFD
- 12 design variables out of 18 selected for Tsearch
- Starting from best of SOBOL
- Maximum iterations limited to 35

Optimization Framework: 4th Optimized Design

- 1st optimized design, is the new baseline for optimization
- Using Automated Software Connection of CAESES and STAR-CCM+ to run it in Batch Mode.
- Propeller thrust reduction as an objective function.

Machine Learning Based Optimization: Data Filtering

Filtered Data

COP Value = 0.9446

	CoP V	alue	Function Value		
# of Variants	Kriging	ANN	Kriging	ANN	
40	0.8212	0.8034	218.42	219.5	
50	0.8796	0.7902	218.42	220.39	
60	0.8809	0.9398	218.42	214.13	
70	0.8867	0.9095	218.42	217.56	
80	0.9446	0.8014	218.42	220.95	

⁻⁻⁻⁻ Complete Data ----- Filtered Data

Optimization Framework: 5th Optimized Design

- 1st optimized design, is the new baseline for optimization
- Using Automated Software Connection of CAESES and STAR-CCM+ to run it in Batch Mode.
- Propeller thrust reduction as an objective function.

Optimization Summary

Optimization Summary

Optimization Framework: 6th & 7th Optimized Designs

- 1st optimized design, is the new baseline for optimization
- Using Automated Software Connection of CAESES and STAR-CCM+ to run it in Batch Mode.
- Propeller thrust reduction as an objective function.

Dimensionality Reduction : KLE - Based Optimization

- Dimensionality Reduction with,
 - 2500 design samples
 - 10000 points per sample
- 4 Principal Parameters were recovered for DOE analysis

	Captured Variance					
Principal Parameter	For Hull	For Tunnel	Combined			
1	56.78	77.58	51.00			
2	82.04	92.56	81.54			
3	<u>98.03</u>	<u>97.56</u>	<u>97.10</u>			
4	98.67	98.65	97.92			
5	99.1	99.16	98.41			
6	99.34	99.52	98.76			
7	99.46	99.77	98.96			

Dimensionality Reduction (PCA)

---- DAKOTA_PCA

Tsearch Study – Surrogate Model

Optimization Summary : Simplified Setup

	% Improvement				
RSM Studies Results	With Kriging Model	With CFD Model			
Starting from Baseline	91.21	93.13			
Starting from Des0006	86.21	88.91			
Starting from Des0015	88.11	90.05			
Starting from Des0038	86.36	89.36			
Starting from Des0070	89.13	90.39			

- Cross-Validation of Surrogate Model with CFD
- T-search starting from Des0015 taken as optimized design # 5

Optimized Design	Optimization Methods	Propeller Thrust	Difference	Time Taken	Data set
		(N)	(%)	(Hrs)	(Hrs)
1st	New Baseline for Optimization	436.84	100	2.3	-
2nd	Design of Exploration (SOBOL)	413.42	94.64	207	-
3rd	Tsearch from 2nd	401.88	92.00	80.5	-
4th	DAKOTA based on SOBOL	391.12	89.53	2.3	207
5th	Tsearch-RSM	393.36	90.05	2.3	207
6th	Design of Exploration (SOBOL) - KLE	415.56	95.13	46	-
7th	DAKOTA - based on KLE	424.32	97.13	2.3	46

Optimization Summary : Full Appended Hull & Fine Mesh

			Optimized Design						
	Original Baseline	1st	2nd	3rd	4th	5th	6th	7th	Units
Thrust	520.4	494.78	448.6	440.76	434.64	438.34	452.04	487.3	Ν
RPMs(one prop)	2280.29	2255.47	2204.2	2205.83	2205.12	2199.32	2206.72	2230.34	/s
Torque	24.44	23.46	21.42	21.196	20.9644	21.0506	21.54	22.84	N.m
Power(kW)	2.9180	2.7705	2.4721	2.4481	2.4205	2.4241	2.4888	2.667	kW/motor
Rtm-FD	519.17	494.31	441.55	434.63	428.1	432.24	445.37	479.99	Ν
Pitch	3.67	4.214	3.83	4.57	4.556	5.01	3.65	4.19	deg
Heave	0.0792	0.0975	0.09	0.1038	0.1047	0.1134	0.0871	0.1267	m
LCG	1.504	1.354	1.354	1.354	1.354	1.354	1.354	1.354	m
<u>% Improvement</u>	<u>0.00</u>	<u>4.92</u>	<u>13.80</u>	<u>15.30</u>	<u>16.48</u>	<u>15.77</u>	<u>13.14</u>	<u>6.36</u>	<u>%</u>

Conclusion and Final Remarks

- Comprehensive studies for optimization of Planing Craft is presented with propeller thrust as the objective function.
- Fully Parametric model is built in CAESES, consisting 18 design variables.
- CFD simulations is carried out in STAR-CCM+, results are verified and validated using grid convergence studies and experimental data, respectively.
- Automated software connection of CAESES and STAR-CCM+ is formed to perform optimization studies.
- Design of exploration is carried out to explore the design space. Exploitation is carried out using deterministic and stochastic methods.
- Using data-driven and dimensionality reduction of design space (KLE) to reduce the optimization time.
- Optimized designs shows 5-15% improvements, the obtained designs are compared with respect to quality of the design against the time taken to achieve it.

New Baseline: 1st Optimized Design

1st Design ----> 4% reduction in propeller thrust

Optimized Designs : Different Views

3rd Design -----> 15.3% reduction in propeller thrust

Optimized Designs : Different Views

6th Design -----> 15.77% reduction in propeller thrust

www.friendshipsystems.com

Osama Ahmed

ahmed@friendshipsystems.com