voith.com



# The application of CAESES from the perspective of a propeller maker

David Bendl | 2024-09-10



## eVSP Stator Cooling

eVSP





- propulsion and steering unit
- units within a power range from 180 kW to 3800 kW
- D = 0.9 .. 3.6 m
- speed range up to 18 kn
- now with directly integrated electric motor (PM motor)

#### **eVSP Stator Cooling**





## eVSP Motor Cooling Increasing of Cooling Effect by adding Fins





#### **Simplified Geometry for CFD**







### **Cooling Fin Geometry Parameters**





#### **Cooling Fin Geometry Parameters**

Design : DA\_Geo\_01\_des0000 Height = 0.010 m Length = 0.015 m Width = 0.002 m Keep Height = 1.00 Keep Length = 1.00



#### **Cooling Fin Matrix Parameters**



#### David Bendl | 2024-09-10 | CAESES Usermeeting





#### VOITH

### Implementation of Cooling Matrix by Feature in only 4 Steps



#### 83 84 85 86 87 88 89 90 91 Brep cadMatrix(lstBlocks) David Bendl | 2024-09-10 | CAESES Usermeeting



#### PersistenSection is used in

#### Brep Fin is created and positioned

```
4) List of Brep Fins is put into
one Brep as container
```

VOITH

#### Parameter Study Ensemble Investigation





Total

1152

#### **Channel Flow One Fin**



## Temperature [k] 301.15 299.15 297.15 295.15 293.15

#### Minor influence on flow mixture $\rightarrow$ low cooling effect



### **Channel Flow Nine Fins**





High influence on flow mixture  $\rightarrow$  good cooling effect

#### Design 1041

#### **Results Parameter Study**







## VSP Headbox Optimization







#### VSP Headbox Parameters







### VSP Headbox Creation Design Curves Origin & Position





#### **VSP Headbox Creation** Surfaces





### **VSP Headbox Creation BReps**





#### **VSP Headbox Creation Rotor Domain**





### Headbox Study Geometry





#### Meshing Star CCM+ Customer Hull Geometry





manual task: hull geometry preparation

#### Meshing Star CCM+ Bare Hull Mesh





manual task: mesh setup

#### Meshing Star CCM+ Hull and Headbox Combination





optimization chain adds headbox geometry

### Meshing Star CCM+ Propulsion Mesh





optimization chain creates propulsion mesh

#### Headbox Study Pressure Distribution







## VLJ Fast Monohull Integration

#### **Voith Linear Jet**





- propulsor for high-speed vessels
- high efficiency for low and high speeds
- compact and silent due to encasing of the rotor by a nozzle
- target maximum speed 25 35 kn
- size range 0.9 m 3.2 m
- power range 900 kW 10 MW

Evolution of VLJ models

#### Open Water



First calculations / optimizations started with simple open water case.

Since the VLJ does not work without tunnels and has a strong interaction with them a generic hull model was created.



Generic Hull Stern Integration

### VLJ Fast Monohull Integration





#### Fast Monohull Hard Chine Hull







#### **VLJ Integration**





#### Inlet Tunnel Definition Curves





#### Inlet Tunnel MetaSurface Section





#### Inlet Tunnel MetaSurface Section

VOITH



construction plane derives its origin and normal from spine curve

position on spine is given by the metasurface advance parameter

construction plane intersections sidecurves and apex  $\rightarrow$  circle based on three points

With the intersection curve of the hull two side fillets are created

#### Final Assembly Tunnels





#### Final Assembly Nozzle





#### Final Assembly Shaft Line and Rudder





#### **Stern Geometry Variation**





#### Wave Pattern, Pressure Distribution Different Speeds





#### Wave Pattern, Pressure Distribution Different Speeds







## Thank you

David Bendl | 2024-09-10 | CAESES Usermeeting