

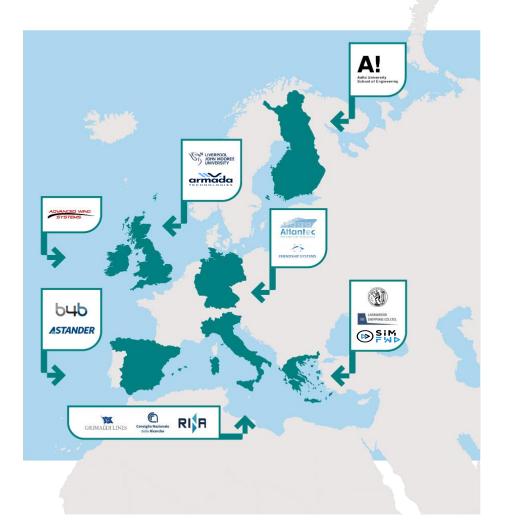
RETROFIT55

RETROFIT SOLUTIONS TO ACHIEVE 55% GHG REDUCTION BY 2030 CAESES User Conference 2024, Potsdam September 11th

Horizon Europe programme, grant agreement No. 101096068

RETROFIT55: Decarbonization solutions to achieve 55% GHG reduction in maritime industry

V. Zagkas R. D'Souza D. Ntouras

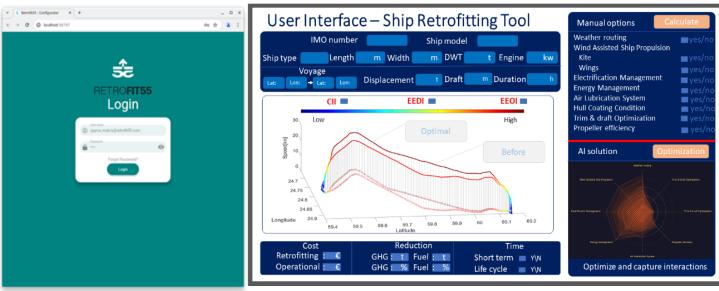

CAESES User Conference 2024, Potsdam, September 11th

RETROFIT55

- ✓ EU founded Project
- ✓ Kick-off: January 2023
- ✓ *Concludes*: December 2025
- ✓ 14 partners
- ✓ 7 countries
- EU target to reduce 55% GHG by 2030 (Fit for 55)
- Propose decarbonization solutions to upgrade the existing fleet

Horizon Europe programme, grant agreement No. 101096068

Decision Support System (DSS)

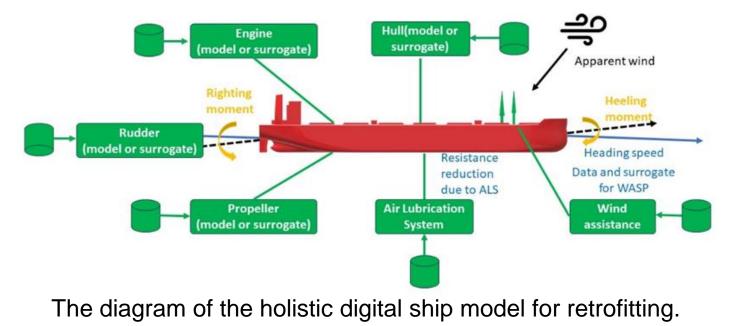

Horizon Europe programme, grant agreement No. 101096068

Funded by

- Interactive web-based tool
- Focuses on safe sustainable ship retrofitting
- It serves as a guide:
 - Energy Efficient Technologies
 - Regulatory Approvals
 - Best Practices

- Customize retrofitting strategies
- Measuring ship performance (EEXI)
- Investment criteria (CAPEX and OPEX)

The designed user interface of ship retrofitting tool.

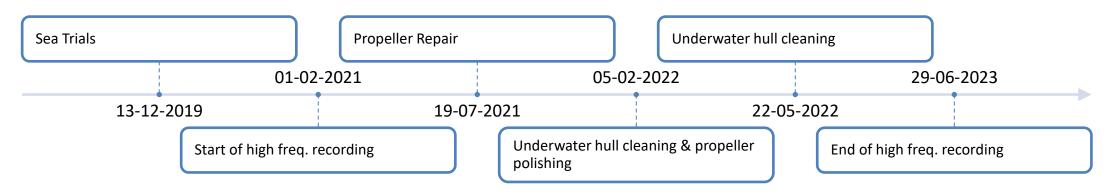

RETROFIT55

- We examine 5 different solutions:
 - Operational Synthesis and Optimization
 - Hydrodynamic Design Optimization
 - Wind Assisted Ship Propulsion
 - Air Lubrication System
 - Electrification and Energy Management System

Horizon Europe programme, grant agreement No. 101096068

- Integration into a Decision Support System
 - Based on a synthesis tool
 - Digital ship model
 - Surrogate models, regression formulas, etc

CAESES User Conference 2024, Potsdam, September 11th

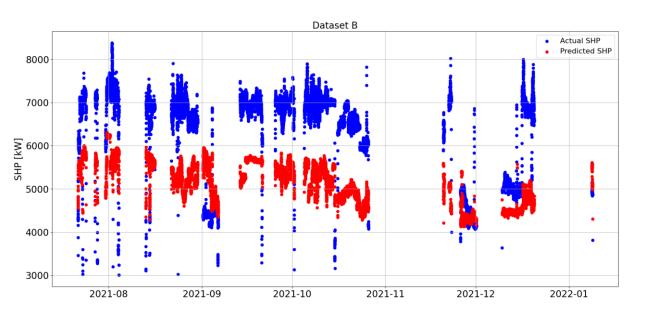

1. Hull and propeller condition monitoring tool

Horizon Europe programme, grant agreement No. 101096068

- Development of a Machine Learning (ML) tool for estimating biofouling penalty
- Processing of two-and-a-half years of operational data from automated logging and noon reports are leveraged for analysis and simulation.

A feature engineering process is implemented to identify the key input variables for a Machine Learning (ML) model that predicts SHP.

1. Hull and propeller condition monitoring tool



Horizon Europe programme, grant agreement No. 101096068

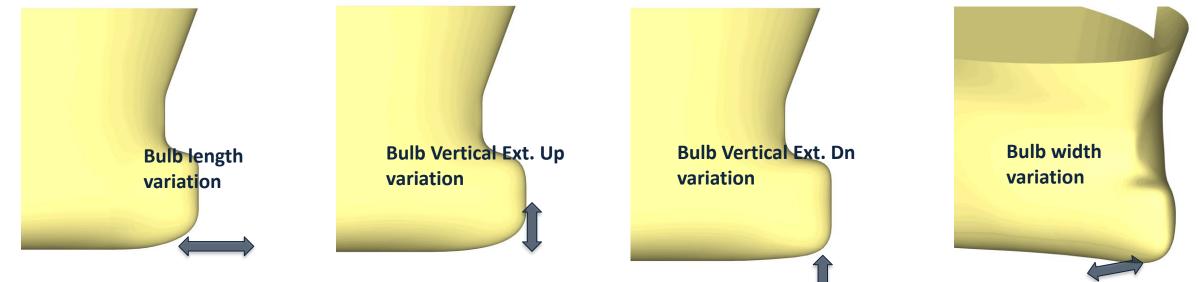
<u>Step-1</u>:

- Training based on data after maintenance (clean condition)
- Aim: Maintenance Optimization
- Result: Mean Increase 21.7%

Step-2

- Training based on data that incorporate also a temporal feature
- Aim: Estimation of added fuel cost
- Result: on Day 400 \$2,743 \$/day added fuel cost is predicted.

Days after maintenance	Mean predicted SHP (kW)	Mean power increase
51	5,006	-
120	5,283	5.5%
347	6,022	21.1%



CAESES User Conference 2024, Potsdam, September 11th

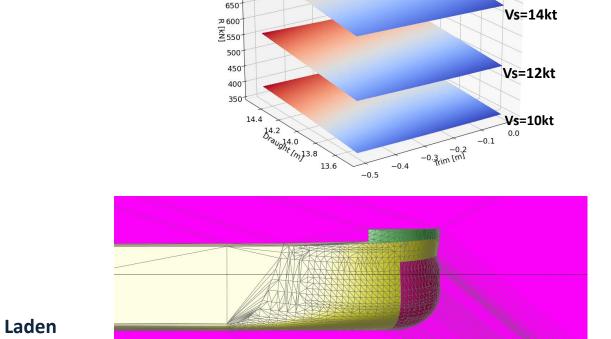
2. Hydrodynamic Optimization

- New hullform with bulbous bow using CAESES software
- Bow transformation using Free From Deformation method
- 4 Bulbous bow design variables
- Small Effect on the ship resistance

750 700

Differences up to 10%

Condition



Ballast Condition

Trim Optimization using CAESES (in progress)

Vs=14kt

Vs=12kt

Vs=10kt

-3.2^{-2.4}-2.2^{-2.0}

Horizon Europe programme, grant agreement No. 101096068

Funded by

500

450

7 400

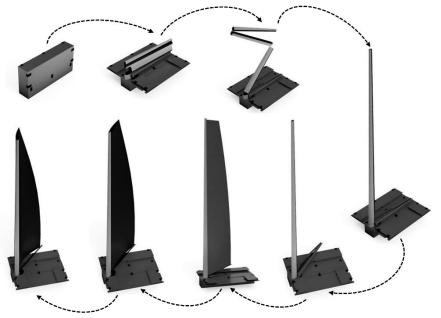
[K] 350

300

250

7.0 6.8

Draught [6.4

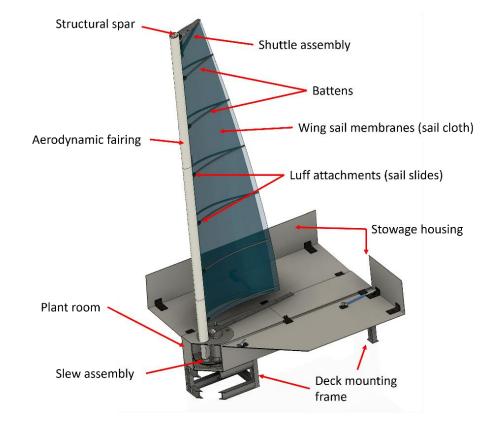

6.2

-3.4 6.0

Differences up to 5%

3. WASP – Semi Rigid Wing

- Automated, collapsible and foldable. Fits into an ISO container
- Developed by Advanced Wing Systems
- The shape of the wind section is controlled through rigid battens



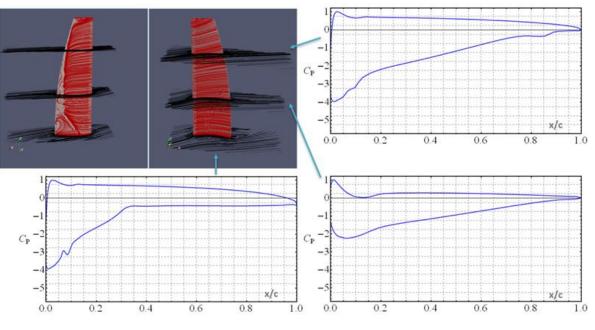
Within RETROFIT55:

System Design and Layout

SE RETROFIT55

Numerical Modelling

Horizon Europe programme, grant agreement No. 101096068

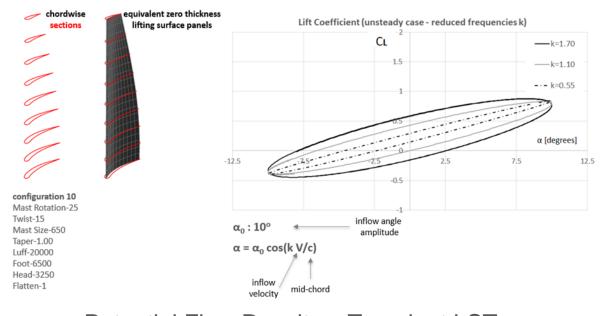

ADVANCED WING

YSTEMS

3. WASP – Semi Rigid Wing

The scope of the task is to obtain:

- Pressure loads along the rigid sail design
- Load coefficients to be used to the dynamics ship model


URANS results. AoA=20°

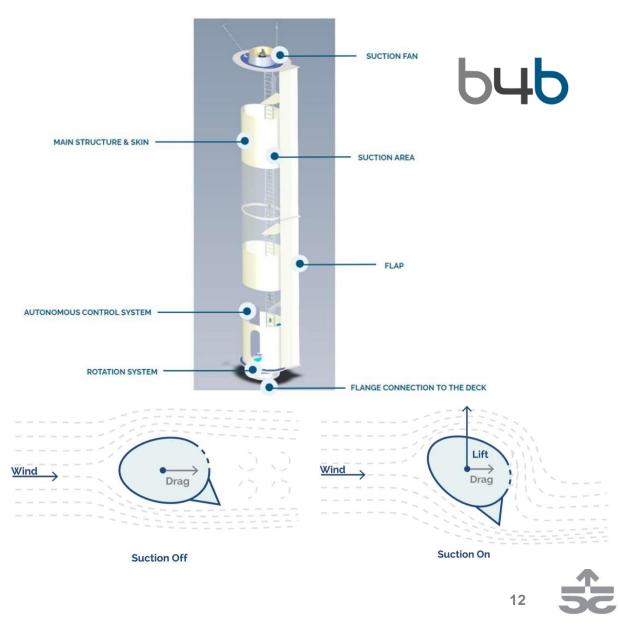
 \checkmark

Horizon Europe programme, grant agreement No. 101096068

- Multi-Fidelity Numerical Modelling
 - Potential for small AoA
- ✓ URANS simulation for large AoA (up to 40°)

Potential Flow Results – Transient LST

3. WASP – Suction Sails



Horizon Europe programme, grant agreement No. 101096068

- Rigid wind sail -eSAIL- developed by bound4blue
- Fully automated rigid sail
- Active boundary layer control using suction

Within RETROFIT55:

- Design a standardized family of steel reinforcements
 - Right force distribution over hull and bow
 - Lowest weight
 - Minimum footprint on the vessel working are
- Weather Routing Optimization

CAESES User Conference 2024, Potsdam, September 11th

Real Voyage

w/o WASP

Real Voyage

with 4eSAILs

Optimal route

with 4eSAILs

3. WASP – Suction Sails

Time

[days]

10.48

✓ Integration of the examined ship in the NTUA's weather routing tool

- ✓ Calculation of shaft power and main engine's fuel oil consumption
- ✓ A real voyage was simulated by the weather routing tool

%

Difference

total EOC

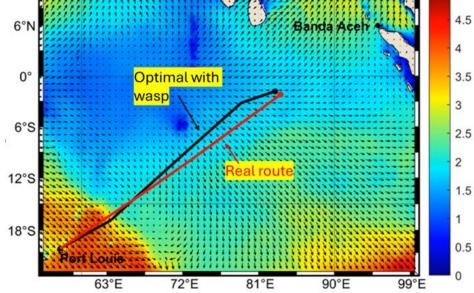
-12.95%

		IVIE FUC	DGFUC	
10.26	-	-	-	
10.26	-10.06%	-14.45%	29.18%	

%

Difference

-17.80%


%

Difference

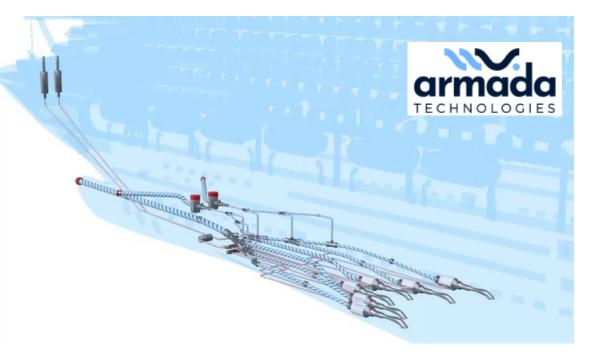
30.56%

Real and optimised route considering the WASP eSAIL

Significant Wave Height

Horizon Europe programme, grant agreement No. 101096068

4. Air Lubrication System



Horizon Europe programme, grant agreement No. 101096068

- Passive air lubrication system (PALS)
- Developed by Armada Technologies
- The power consumption is significantly reduced through the application of a Venturi to passively create bubbles

Within RETROFIT55:

- Determine the complete system design and layout
 - Injection Conditions
 - Outlet Design
- Hull and Sea Condition effect
- Optimizing the system to deliver fuel savings of 6-8 percent.

5. Electrification and Energy Management System

Horizon Europe programme, grant agreement No. 101096068

- Analyze on board energy systems of M/V Kastor
- Propose New Solutions:
 - Active and reactive load analysis
 - Shaft Generator systems (PTO/PTI)
 - Cold ironing
 - Power Converters for supplying large motors
 - Photovoltaic solar panels
 - Optimum operation of electric energy system
 - Fuel Cells
 - Batteries

Measure	Design stage	Retrofit feasible	Mature technology	Technology needs further development
Optimal selection of generator sets	Appropriate if not mandatory	Difficult, if not impossible	~	
Active and reactive load analysis	Appropriate if not mandatory	Difficult, if not impossible	~	
Shaft Generator systems	Yes	Possible	~	
Cold ironing	Yes	Yes	✓	
Power Converters for large motors	Yes	Yes	~	
Photovoltaic solar panels	Yes	Possible	~	
Optimum operation of electric energy system	Yes	Difficult, BUT not impossible	~	
Direct Current integration	Yes	Difficult if not impossible	~	
Waste heat recovery - TEG	Yes	Possible	~	
Fuel Cells	Yes	Difficult, BUT not impossible		✓
Batteries	Yes	Possible		✓

Summary of applicability of ship performance improving

measures.

Conclusions

- Operational Synthesis and Optimization
 - Optimized maintenance of hull and propeller can prevent the significant power increase (M/V Kastor ~ up to 21%)
- Hydrodynamic Optimization
 - Small gains have been observed from bow retrofitting and trim optimization
- Wind-Assisted Ship Propulsion
 - Gains up to 10% have been observed in FOC
- Air Lubrication System
 - Research is still ongoing however a drag reduction up to 8% is expected
- Electrification and Energy Management System
 - Shaft generator systems (PTO/PTI) is a viable solutions

Future Steps

Horizon Europe programme, grant agreement No. 101096068

- Hydrodynamic Optimization
 - Evaluation of Energy Saving Devices
 (Pre-Swirl Fins, Wake Equalizing Duct, Propeller Boss Cap Fin)
- Wind-Assisted Ship Propulsion
 - Prototype construction and land based trials (Semi-Rigid Wing)
- Air Lubrication System
 - Experimental Studies to examine hull and sea condition effects
- Electrification and Energy Management System
 - Integration of a Smart Energy Management System
- Decision Support System
 - System testing and validation

Horizon Europe programme, grant agreement No. 101096068

Visit Us: <u>retrofit55.eu</u>

CAESES User Conference 2024, Potsdam, September 11th