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The Task of Generative Learning

Supervised learning: Learn a unknown
conditional distribution f(y|x) from pairs
of data (Yi,Xi).
Unsupervised learning: Learn a
unknown distribution f(x) from data Xj.
Reinforcement learning: Learn a policy
from rewards
Generative learning: Learn how to
generate new samples from a unknown
distribution f(x) on the basis of data
Xj ∼ f(x).
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The Challenge of Modern Generative Learning

From NVIDEA Style GAN, thispersondoesnotexist.com, Karras, Laine, Alia 2018

Challenge: Xj ∈ Rd is high dimensional, d ∼ 106.
Xj could be images, a text messages, spoken language. . .
Sampling from (log-) densities with MCMC is feasible, but need a density
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Generative Adversarial Learning

Min-Max two player game ϕ̂ ∈ argminϕ∈H sup
D∈HD

L̂(ϕ,D, {Xj})

With Xj ∼ µ, Uj ∼ λ(d), the empirical loss is defined as

L̂(ϕ,D, {Xj}) =
1
2n

n∑
j=1

[log(D(Xj)) + log(1− D(ϕ(Uj))]
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Turbulence in Fluid Dynamics

Turbulent flow is chaotic by nature
Computational Fluid Dynamics (CFD): Simulation of
turbulences by numerically solving Navier-Stokes equations:

∂ρ

∂t
+∇ · (ρu) = 0

∂(ρu)
∂t

+∇ · [ρu⊗ u] = −∇p+∇ · τ + ρf

∂(ρe)
∂t

+∇ · ((ρe+ p)u) = ∇ · (τ · u) + ρf · u+∇ · q̇+ r

But: Turbulent flow develops ever smaller and faster structures which are hard to
resolve numerically
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Simulation of Turbulence

Comparison of turbulence modeling approaches. Source: (J. Hart 2016)

Modeling turbulences challenging in practice but highly technical relevant
LES/DNS: Simulation of large or even all scales of turbulence but:
Enormous computational costs
RANS/URANS: Struggle in simulation of fine details in vortex flow but:
Computational costs are sustainable ⇒ mostly used in industry
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Ergodicity: What Does “Chaotic” Actually Mean?

Vortices always look different but in the long run their statistical properties are
determined (ergodicty):

lim
T→∞

1
T

∫ T

0
f ◦ φt(x0) dt =

∫
Ω

f(x) dµ(x) ∀x0 ∈ Ω. (1)

⇒ The time average of a dynamical system equates with the ensemble average of its
invariant measure.
Probability measure µ on the flow configurations x encodes the statistical properties
of the chaotic flow/dynamics φt(x0)
Goal: Sampling from the unknown measure µ⇒ Can we learn µ from data?
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Modeling Turbulence by GAN

Our contribution:
GANs as another possibility to model turbulence
Proof that GANs do converge for ergodic learning problems
Generation of images that are as good as the output of the LES while requiring
significantly less computation effort
Numerical demonstration of generalization over changes in geometry
Proof that physical quantities that characterize turbulence converge
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Lorenz Attractor

Less complex deterministic ergodic
system given by the system of ordinary
differential equations

dx
dt

= σ(y − x)

dy
dt

= x(ρ− z)− y

dz
dt

= xy − βz

with σ = 10, β = 8
3 and ρ = 28.
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Lorenz Attractor - Training

Random
vector Z

Generator ϕ
(NN)

Fake
sample
ϕ(Z)

Real-world
images X

Real
sample
X ∈ X

Discriminator D
(NN)

Real

DCGAN

Loss

Vanilla GAN for 200 000 epochs with batch size 20 000
Trajectory started per epoch from randomly sampled initial point (x0, y0, z0)
Gaussian noise added to the network of discriminator and its real input data
ϕ and D (deep) fully connected neural networks
U ∈ R100,U ∼ U(0, 1)
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Lorenz Attractor - Results I

Trajectory consisting of 20 000 data points (red) and 3 000 synthesized data points (blue)
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Lorenz Attractor - Results III

Rotated perspective from the trajectory of real data points (red) and the synthesized data points (blue).
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Karman Vortex Street - Data

Dataset: 5,000 images produced by LES
Images: w × h = 1,000× 600

Example of the dataset.
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Karman Vortex Street - Training and Inference I

Training
GAN frameworks:

• Vanilla GAN
• Wasserstein GAN
• Deep convolutional GAN

Epochs: 200
Batch size: 20
Input:

• 5,000 LES images
• Image size: k × k,
k ∈ {64, 128,256,512}

• Noise vector
Z ∈ R100,Z ∼ N(0, 1)

Random
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Generator ϕ
(NN)

Fake
sample
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Real
sample
X ∈ X

Discriminator D
(NN)

Real

Fake

Loss

H. Gottschalk GenAI 4 ME 14 / 43



Karman Vortex Street - Training and Inference II

Inference
Trained generator ϕ
Input: Noise vector
Z ∈ R100,Z ∼ N(0, 1)

Random
vector Z

Generator ϕ
(NN)

Fake
sample
ϕ(Z)
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Karman Vortex Street - Vanilla GAN

LES image Fake image

Experiment settings:
Architecture of ϕ and D: Fully connected NN with 5 layers
Optimizer: Adam
Learning rate: 2 · 10−4
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Deep Convolutional GAN (DCGAN)

Random
vector Z

Generator ϕ
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Fake
sample
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Real
sample
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Real

Fake

Loss

Architecture of DCGAN.

Generator and discriminator are convolutional neural networks (CNNs)
CNNs expecially successful and applicable in field of image processing
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Deep Convolutional Generative Adversarial Network II

Guidelines to follow for stable training at higher resolution and deeper architectures:
Stability: Apply batch normalization on the output layer of ϕ and the input layer of D
Deeper architectures: Avoid fully-connected layers on top of convolutional features
Higher resolution modeling: Leaky Rectified Linear Unit (ReLu) activation function for D
ϕ and D learn own spatial up- or downsampling by by replacing deterministic spatial pooling
layers with (fractional-) strided atrous convolutions (Radfort et al 2016)
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Karman Vortex Street - Inference results after 2,000 Epochs
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Karman Vortex Street - Inference results after 2,000 Epochs

LES

Fake

Comparison of LES (top) and fake images (bottom) produced by generator ϕ trained for 2 000 epochs.
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Sampling Results for the Karman Street

Results of the DCGAN after 1, 500, 1000, 1500 and 2000 Epochs of training
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LPT Stator Under Periodic Wake Impact (LPT Stator) - Data

Dataset: 2,250 images produced by LES
Images: w × h = 1,000× 625

Example of the dataset.
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LPT Stator - DCGAN: Results

Examples of images generated by ϕ trained for 2 000 epochs with 2 250 images.
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Conditional GAN (cGAN)

Random
vector Z

Generator ϕ
(NN)

Fake
sample
ϕ(Z|η)

Real-world
images X

Real
sample
X ∈ X ,

X|η

Discriminator D
(NN)

Real

Fake

LossAdditional information η

Take control over the data production process by conditioning GAN framework
Extension of loss function:

Lcond(D, ϕ) = E X∼µ
η∼ν

[log(D(X|η))] + E Z∼λ
η∼ν

[log(1− D(ϕ(Z|η)))] (2)
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LPT Stator - Conditional Training

LES image Binary segmentation mask
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High-Resolution Image Synthesis with Conditional GANs

Special form of cGAN
Generation of high-resolution photo-realistic images by conditioning the input of the
adversarial network on the corresponding semantic label maps
We use the NVIDEA pix2pixHD cGAN architecture, whose optimization problem is
given as

min
ϕ

max
D

Lcond(D, ϕ) (3)
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High-Resolution Image Synthesis with Conditional GANs

Introduction of three innovations for improvement of photorealism and resolution of
the synthesized images:
1. Coarse-to-fine generator: Decomposition of the generator into two sub-networks

⇒ ϕ = {ϕ1, ϕ2}
2. Multi-scale discriminators: Three discriminators D1,D2 and D3 with same

architecture but operating on different scales ⇒ Modification of loss function:

min
ϕ

max
D1,D2,D3

3∑
i=1

Lcond(ϕ,Di) (4)

3. Feature matching loss LFM: Stabilize training
Loss function in total:

min
ϕ

[(
max

D1,D2,D3

3∑
i=1

Lcond(ϕ,Di)

)
+ γ

3∑
i=1

LFM(ϕ,Di)

]
(5)
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LPT-Stator - Experiment Settings

Architecture: Adopted from original
authors with small changes to avoid
artifacts
Epochs: 200
Batch size: 10
Input: 2,000 LES images, noise vector
and masks of size k × k′ = 992× 624
Optimizer: Adam
Learning rate: 2 · 10−4

Random
vector Z

Generator ϕ
(NN)

Fake
sample
ϕ(Z|η)

Additional information η

Inference
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LPT Stator - Inference Results I

LES image Fake image
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LPT Stator - Results II

LES image Fake image
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LPT Stator - Results III

LES image Fake image
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LPT Stator - Results IV

LES image Fake image
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Computational Costs

▶ LES:

• Performed on 560 CPU cores of the CPU type Intel Xeon "Skylake" Gold 6132 @2.6 GHz

• Karman vortex street (5 000 images): 72 core weeks =̂ 1 days

• LPT Stator (2250 images): 640 core weeks =̂ 8 days

▶ GAN-Training:

• Performed on GPU of type Quadro RTX 8000 with 48 GB

• Karman vortex street (DCGAN, 2 000 epochs): 1.5 min/epoch

• LPT Stator (pix2pixHD, 200 epochs): 17 min/epoch

▶ GAN-Inference:

• Performed on GPU of type Quadro RTX 8000 with 48 GB

• Karman vortex street (DCGAN): 0.001 sec/image ⇒ 5 seconds

• LPT Stator (pix2pixHD): 0.01 sec/image ⇒ 22.5 seconds
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Genaralization for Unseen Geometry Configurations

Repeat experiment with 5% of the images ommited around specific wake position
During inference, position the wake at exactly the middle of that position
results demonstrates generatization capability over unseen changes in geometry
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Statistical Similarity vs Phsics

Measure strength of turbulence (variation of c = |u| as a function of ξ

Var[c(ξ)] = lim
T→∞

1
T

∫ ∞

0
|c(ξ, t)− c̄(ξ)|2 dt
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Invertible Neural Networks - INN

Generative learning relates to inverse design

H. Gottschalk GenAI 4 ME 36 / 43



Dimension Matching

In Design, usually there is a dimensioal mismatch between many input- and a few
output parameters
This can be used to generate design alternatives
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Case study for a Multi Fuel Burner
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Design Parameters
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Trained INN - Forward Mode
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Trained INN - Backward Mode
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Trained INN - Design Diversity
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Summary

Generative learning can be useful for applications beyond speech generation and
computer vision
Further data models, like deterministic chaos, can be combined with generative
adversarial learning.
Considerable speedup can be obtained during inference by GAN
INN can help in inverse design
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