Trends and Challenges in Turbomachinery CFD – and the Differences to Marine Simulations

2024

CAESES User Meeting 2024

Turbomachinery and Marine CFD

An Engineering Comparison

A Sales Perspective

1

Typical Behaviour of Industry (when I started):

	Marine	Turbo	
Use of CFD	Not always	Always	
Use of Optimisation	Often (applied to potential solvers)	Rarely (still)	
(Model) Testing	Often (model scale)	After the design phase; Rarely scaled	

Guideline to Today's CFD

"Isolated Aerodynamics becomes less and less important!"*

 Multi-Physics (= extended CFD): 	Combustion, Spray, Radiation, Particle
 Multi-Disciplinary (= CFD + Cxx): 	Fluid-Structure Interaction (FSI), Conjugate Heat Transfer (CHT), Aeroacoustics (CAA), etc.
Multi-Component:	Single blade row → Stage → Compressor (Turbine) → Full Engine
 High Fidelity / High Resolution: 	Full CAD, 1 Billion + cells,
System Knowledge:	Optimisation, Uncertainty Quantification (UQ), Robust Design Optimisation
Less Modelling:	Unsteady Simulations, LES, DNS, HOM

CFD: How far did we come? CROR (Our Revenge for AFRAMAX)

Copyright NUMECA UME

8

Contra Rotating Open Rotor:

- Huge SFC improvements
- Rotor-Rotor interaction
- Pressure fluctuations
- High acoustic loads
- Unsteady CFD simulation required

Nonlinear Harmonic Method (NLH) vs. classic unsteady

Quantity	NLH	Classic unsteady		
Cells	~ 18 Mio.	~ 67 Mio.		
Mesh Factor	1	3,7		
Time steps	1000	360*20*2*1306		
CPU time/ time step	780 s	269 s		
CPU time	0.3 days	2,177 days		
Factor	1	7,159		

CROR: Acoustic Waves

9

NLH Rank 1

NLH Rank 2

$$\overline{p(t)} - p(t) \text{ using } \overline{p(t)} = \sum_{i=1}^{i=N} \frac{p(t)}{N}$$

Animation of static pressure difference on fuselage, pylon and nacelle

Multi-Component Simulation: Full Engine

Full Micro Gas Turbine KJ-66

KJ-66 Micro Turbo Jet Engine

- Combustion camber: 7,8 Mio. cells (unstructured)
- Turbine: 7,4 Mio. cells (structured)
- Exhaust pipe: 0,96 Mio. cells (unstructured)

Turbine

Copyright NUMECA

11

Reconstruction of Unsteady Flow Field

FSI: Campbell Diagram

Dynamic FSI Phenomena: Forced response & flutter

Inter Blade Phase Angle

Forced Response: Radial Turbine

Aerodynamic forcing

Aerodynamic damping

Courtesy: ITSM Stuttgart

Uncertainty Quantification

CFD simulations are run today with a unique set of input data. Real conditions are, however, subject to uncertainties:

- Uncertain operating conditions
 - Inflow conditions, pressures, (fuel) mass flow
- Manufacturing uncertainties
 - Milling, forging, assembly tolerances
- Geometrical shape variability
 - Life degradation such as erosion, foreign object damage, fouling , tip gap
- Examples are aero engines, aircraft wings, ship propellers or hulls

UQ: The Idea

New type of simulations: Input & predicted quantities (loads, resistance, speed, efficiencies, manufacturing tolerances.....)

- No longer represented by a discrete value,
- But by a Probability Density Function (PDF)
- Provides a domain of confidence in relation to the considered uncertainties

UQ: Performance Curve

- NASA Rotor 37: 5 Uncertainties (Inflow, Outflow, Tip Gap)
- UQ provides a domain of confidence (here UQ bars: ±σ), which can be obtained with 11 simulations per operating point.
- Outcome: The most likely result of an UQ simulation is not identical with the result of a deterministic simulation using the most likely inputs!

Robust Design Optimisation

- Minimise the variation of the system response
- By optimising for a decreased standard deviation: Min $\sigma(\eta)$
- Outcome: A **Design** which is **Robust** against a variation of input parameters

CFD: How far did we come? **RDO Example: Ship Propeller**

20

Operational variabilities:

- Operating loading
- Trim angle
- Inflow conditions

Geometrical shape variabilities:

- Erosion/damage / fouling
- Manufacturing tolerances

RDO:

- 18 design variables + 4 uncertainties
- Max $\bar{\eta}$ 💉 Min $\sigma(\eta)$

A more reliable and more efficient propeller!

AI Applied for Propeller Calculations

• CFD simulations necessary for predicting and fine-tuning ship propulsion.

B5-60_P/D=1.1 -10*K0

1.0

1.2

1.00

• Full curve (~ 20 operating points) needed.

• Artificial Intelligence / Machine Learning offer instantaneous results – as exact as CFD.

Parametrized Geometry

Workflow

¹ Baque, P., Remelli, E., Fleuret, F., & Fua, P. (2018, July). Geodesic convolutional shape optimization. In International Conference on Machine Learning (pp. 472-481). PMLR.

Comparison of Axial Velocity in Wake - 7 Blades

- Good agreement between AI prediction and CFD.
- Small local differences in fluctuating regions.

CFD: How far did we come? Good & Fast

	Averaged Error [%]		
K _t	1.21		
10K _q	1.48		
η	1.5		

- Averaged error over all samples below 1.5 %
- Same order of magnitude as modeling error in CFD

	Time
CFD	~ 100 CPUh
AI	~ 20s

• Trained AI has negligible response time

3

The Guideline: NASA Vision 2030

NASA/CR–2014-218178: CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences

Copyright NUMECA

27

Down the road: The near future General Trends

Capacity: Computing Power: LES CFD Simulations / Night [FLOPS] Unsteady RANS 10² 1 Exa (10¹⁸) Japan Plans Zeta-Class 10³ RANS Low Speed - 1 Peta (10¹⁵) COMPANY P 104 RANS High C²A²S²E Speed - 1 Tera (10¹²) "Geschickte" Nutzung von HPC•. 105_ Algorithmen Data mining 10⁶. Wissen 🗕 1 Giga (10°) 2020 1990 2000 2010 2030 1980 Aero CFD-basierte CFD-basierte CFD-Echtzeit-Reiseflug ∕**P**Aero Multidiszipl. Optimierung Lärm-Lasten und simulation Design Daten & CFD-CSM Optimierung HQ-Daten simulation des Flugs AIRBUS Vision from 2008 5 Opening of the C²A²S²E HPC Cluster Type & Quality of Result / Night AIRBUS

Expectation in the Numerical Simulation

Computer (2030)

13.05.2008 in Braunschweig

Knowledge Extraction (Post-Processing): Paradigm Change

- Co-Processing ("in-situ" processing)
- Graphical Postprocessing (*.png)

Knowledge Extraction (Post-Processing): Paradigm Change

>DEALING WITH I/O BOTTLENECK

>>In-situ processing and rendering

"Extraction In situ" - Extract subset of data, save the extraction for future processing

"Rendering In situ" - Extract subset of data and render immediately

Source: Kitware Presentation Kick-Off Meeting PRESTIGE 3.5.2018 Berlin

Probably the next generation CFD software for unsteady flows

Current CFD codes are of second order (in the brochure):

- On smoothly varying cartesian grids
- On unstructured grids (?)

High order methods (HOM) on unstructured grids:

- Methods:
 - Discontinuous Galerkin methods (DG)
 - Flux Reconstruction methods (FR)
- Cell: Single values \rightarrow Polynomials
- P-Adaptation: Accurate where necessary
- Provides highly accurate solutions on coarse grids
- Necessity for curved meshes at boundaries

High Order Methods: Example

2nd Order Scheme Mesh 64x64, P1 (=2nd order) 16384 DoFs High Resolution 4th Order Scheme Mesh 32x32, P3 (=4th order) 16384 DoFs

High Order Methods are computationally much more efficient than traditional methods (second order):

Order	DOF/cell	PPW	Mesh size (B)	Relative size	DOF (B)	Floats/∆t/ mesh cell	Relative floats	Relative cost
P1	8	75	421	1	16840	3.6 × 10 ³	1	1
P2	27	15	3.3	0.0078	445	6.9 × 10 ³	1.94	1/66.2
Р3	64	8	0.51	0.0012	163	14.7 × 10 ³	4.09 (1/203

Copyright NUMECA Ingenieurbüro

35

Bill Dawes, RR Aerothermal Conference 2016: Keynote 3

Energy Efficient Programming

Down the road: The near future Turbulence: Still A Challenge

"Aristotle said a bunch of stuff that was wrong. Galileo and Newton fixed things up. Then Einstein broke everything again. Now we basically got it all worked out, except for Small stuff, big stuff, hot stuff, cold stuff, fast stuff, heavy stuff, dark stuff, The concept of time and <u>Turbulence!</u>"*

*Zach Weinersmith

LES Low Pressure Turbine

38

- T161 Cascade (MTU)
- Order 5

LES Low Pressure Turbine

15 Years Later

A Great Collaboration

