Hull Form Optimization for VARD ZeroClass

Nuttarat Vichanphruek, Lennard Bösch Skytøen 11.09.2024

THE VARD VISION

To lead the green and technological transition transition in maritime operations.

VARD at a glance

Shipyards

Employees

8000

Order book

Updated Q2 2024

32

Countries

12

HQ in Ålesund, Norway

Deliveries since 2000

400+

Several specialised entities

VARD is the Offshore expert in the global Fincantieri group

Global design capabilities

Vard Marine

Employees

Concepts sold Since 1988

400+

Yards

Since 2005

Vard Marine

Built on trust[™]

Vard Design vard Design & Engineering

Vard Engineering Gdansk

Deliveries

Vard Engineering Vietnam

Vard Engineering Constanta

Vard Design Liburna Liburna

Built on trust

Hull Form Area low adjust factor Area low Area low Area low Diggo 0.070063 Analowend 0.67 HallOptParam Balleon Ben C Tiptan width 0. HullOptParam(Bulleon, Beer) Profile & bullengfelTip rel Builtingh area Builtingh area Builtingh rel Builtingh rel Builtingh rel Builtingh rel Builtingh area Builtingh area Builtingh area Builtingh area torgert diag a Fincantieri company

Benchmark - a decade of development

Benchmark - a decade of development

X

Z

X Y

	Rt	Cadx
Vs	Reduction	Improvement
11	32.0%	24.4 %
13	25.5%	23.0 %
15	11.2%	12.8 %

How?

- In-House Cluster: 740 cores across 20 nodes
- (wo)manpower (4 dedicated hull designers)
 - 2 Research Engineers
- Software solutions
 - CFD (RANS): Star CCM+, Lemma (NiceFlow), Shipflow XCHAP
 - CFD (Potential Flow): ShipX, Shipflow • Motions/Xpan
 - CAD: Rhino, Ca •

Ship Design is our passion

When?

- Hull form optimization
- Fast development of custom appendices

Why Caeses?

- Hull form optimization
- Fast development of custom appendices •
- Smooth surfaces →Clean geometry for CFD

Where?

													Βι	uilt	on	tr	us
													a Fi	nca	ntier	I CO	mpa

																								DL	ilt.	OP	tr	
																								DU	πιτ		TU -	uS
	-	1	4	1	1	-	1	1	10	10	- 10	10	1	- 10	10		-		-	-			-			lt o	n t	
							_		•	_						_												
	4					Pr	op	วน	lsi	on	Ρ	٥V	ve	r P	ro	gr	105	SİS							JUI		11 L	ru
						Pr	ot	DU Pr	lsi no.	on 28:	P 10 V	O∨ √AF	ve RD	r P	ro sc	ogr SV	109	SİS							oui		11 L	ru
		Distr	ibut	ion		Pr	ot	DU Pr	lsi no. ERN/	ON 28: AL	10 V	OV √AF	ve RD	r P	ro so	ogr SV	109	SÍS							JUI			ru
		Distr	ibut	ion	~	Pr	or V	DU Pr INTE	lsi no. ERN/	01 28: AL	10 V	OV √AF	ve RD	r P	ro sc	ogr SV	109	sis	•	•	•	•	•		JUI ▼		v	
		Distr	ibut	ion	A A	Pr	ot	DU Pr INTE	lsi no. ERN/	ON 28: AL	10 V	OV √AF	ve RD	r P	ro so	ogr ov		sis v	v	v	v	v	v v	v	v v v		v	V
		Distr	ibut	ion	A A A	Pr	.ot	DU Pr INTE	Isi no. ERN/	0 28 AL	10 V	OV VAF		r P		ogr ov		sis v	v v	v v	v v	v v	v v	v v	v v v		v	V
		Distr	ibut	ion	A A A A	Pr		DU Pr INTE	Isi no. ERN/	0 28 AL	10 V	OV VAF	ve RD	r P	ro so	ogr ov			v v v v	v v v v	v v v v	v v v v	• • •	× × × ×	y V V V V		• • •	V V V
		Distr	ibut T	ion	A A A A A	Pr		DU Pr INTE	ISI no. ERN/	0 28 AL	P 10 V	OV VAF		r P		ogr ov			× × × ×	× × × ×	× × × ×	× × × ×	× × × ×		y v v v		• •	
		Distr	ibut V	ion V	× × × ×	Pr		DU Pr INTE	ISI no. ERN/	0 1 28 2 8 1	P 10 \ 7	OV VAF		r P	sc sc	ogr DV			× × × × ×		× × × × ×						v v v v v	
		Distr	ibut V	ion	$\mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x}$	Pr		DU Pr INTE	ISI no. ERN/	0 1 28 2 8 2 8		OV VAF		r P	sc sc	ogr ov												
		Distr	ibuti	ion	$\mathbf{x} \times \mathbf{x} \times \mathbf{x} \times \mathbf{x}$	Pr		DU Pr INTE	ISI no. ERN/	0 1 28 2 8 4 1		OV VAF		r P	SC SC	ogr DV							× × × × × × × ×					
)istr	ibut	ion	$\mathbf{x} \times \mathbf{x} \times \mathbf{x} \times \mathbf{x} \times \mathbf{x}$	Pr		DU Pr INTE	Isi no. ERN/	ON 28: AL		OV VAF		r P	oro	ogr DV				× × × × × × ×		* * * * * * * *	× × × × × × ×					
		Distri	ibuti V V V V	ion V V V V V	$\mathbf{x} \times \mathbf{x} \times \mathbf{x} \times \mathbf{x} \times \mathbf{x}$	Pr		DU Pr INTE	ISI no. ERN/	ON 28: AL		OV VAF		r P		ogr DV			$\bullet \bullet $	* * * * * * * * *	× × × × × × ×	X X X X X X X X	× × × × × × × ×	X X X X X X X X				
		Distri	ibuti	ion V V V V V V V		Pr		DU Pr INTE	ISI no. ERN/	ON 28: AL		OV VAF				ogr DV			× × × × × × × ×	× × × × × × × ×	× × × × × × × ×	X X X X X X X X X X X X X X X X X X X	× × × × × × × ×	X X X X X X X X X				
		Distr	ibuti	ion		Pr		DU Pr INTE	ISI no. ERN/	ON 28: AL		OV VAF				ogr DV			* * * * * * * * * * *	* * * * * * * * * * *	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X	A A A A A A A A A A				
)istri	ibut 7 7 7 7 7 7 7 7 7 7 7 7 7	ion	• • • • • • • • • • •	Pr		DU Pr INTE	ISI no. ERN/	ON 28: AL		OV VAF		r P		ogr DV			* * * * * * * * * * * *	• • • • • • • • • • • •	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X	A A A A A A A A A A				
		Distr	ibut V V V V V V V V V V V V	ion V V V V V V V V	× × × × × × × × ×	Pr v		DU Pr INTE	ISI no. ERN/	ON 28: AL		OV VAF		r P		gr DV			X X X X X X X X X X X X X X X X X X X	• • • • • • • • • • • • •	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X					
		Distri	ibuti V V V V V V V V V V V V V		X X X X X X X X X X X X X X X X X X X 	Pr			ISI no. ERN/	ON 28: AL				r P		gr DV			X X X X X X X X X X X X X X X X X X X	• • • • • • • • • • • • • •	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X 	X X X X X X X X X X X X X X X X X X X 	a Ei				

Built on trust

→ Balancing Opposing Performance Metrics

VARD a **Fincantieri** company

Hull Form

[∨] 0_HullOptParam|Area_low

- Area low 1 adjust factor °, ➡ Area low begin 0.979063 ? ? C Area low end ✓ 0_HullOptParam|Bulbous_Bow 😤 TipTan width 0.5 🤈 ? 0_HullOptParam|Bulbous_Bow| Profile ➡ bulbheightTip rel 0.75 ? ➡ bulbHigh area factor ? 😤 bulblength rel 🛛 1 ? tor cut 0.12 ? tactor bulbLow area 0.3 ?
- ✓ 0_HullOptParam|Diagonal ° ? 😤 EntranceAngle 📑 x aft rel 0.05 ← 0_HullOptParam|Diagonal|tran ≠ tangent diag

5 2

😤 xPos rel diag 0.635

CAESES model

Focus on the bow

- Model the Bilge radius together with bilge keel
- Fix the main curves for all constraints we have.
- Optimize foreship with XPAN potential flow.

Foreship Optimization

Less bow and shoulder wave making

Wave pattern at 11 knots.

Less bow and shoulder wave making

Wave pattern at 14 knots.

Self Propulsion Optimisation

The Sea Zero Consortium

Built on trust[™]

Contra-Rotating-Propeller

Shipflow XCHAP

Aft Body Optimization - Parameters

Parameter

Relative p3 x position Aft rise Relative fore tangent length Relative p2 x position **Relative Mid Rise**

Worst Aft Body Design

Bad Aft Body Design

Optimum Aft Body Design

velocity_magnitude

-z

Built on trust[™]

Design space exploration (SOBOL)

VelocityX

velocity_magnitude

-z

Built on trust[™]

Design space exploration (SOBOL)

velocity_magnitude

Built on trust[™]

Optimization with surrogate model *(Dakota global optimization on response surface)*

Appendices

Bilge keel

Example of roll decay run

Bilge keel

Roll decay run

Roll Decay Test

Time (s)

Bilge keel

RAO run

Hs 2.5 m Tp 13 s bow quartering

Built on trust[™]

Whisker

Cable Laying Vessel (CLV)

Catenery curves

-::-

Equation driven curves

Thank you

